COMMODORE 128

PROGRAMMER’S
REFERENCE GUIDE

Bantam Computer Books

Ask your bookseller for the books you have missed

THE AMIGADOS MANUAL
by Commodore-Amiga, Inc.

THE APPLE //c BOOK
by Bill O’Brien

THE ART OF DESKTOP
PUBLISHING

By Tony Bove, Cheryl Rhodes,
and Wes Thomas

ARTIFICIAL INTELLIGENCE
ENTERS THE MARKETPLACE
by Larry R. Harris and

Dwight B. Davis

THE BIG TIP BOOK FOR
THE APPLE II SERIES
by Bert Kersey and

Bill Sanders

THE COMMODORE 64 SURVIVAL
MANUAL
by Winn L. Rosch

COMMODORE 128 PROGRAMMER’S
REFERENCE GUIDE
by Commodore Business Machines, Inc.

THE COMPUTER AND THE BRAIN
by Scott Ladd/
The Red Feather Press

EXPLORING ARTIFICIAL INTELLIGENCE
ON YOUR APPLE II
by Tim Hartnell

EXPLORING ARTIFICIAL INTELLIGENCE
ON YOUR COMMODORE 64
by Tim Hartnell

EXPLORING ARTIFICIAL INTELLIGENCE
ON YOUR IBM PC
by Tim Hartnell

EXPLORING THE UNIX ENVIRONMENT
by The Waite Group/Irene Pasternack

FRAMEWORK FROM THE GROUND UP
by The Waite Group/Cynthia Spoor and
Robert Warren

HOW TO GET THE MOST OUT OF
COMPUSERVE, 2d ed.
by Charles Bowen and David Peyton

HOW TO GET THE MOST OUT OF THE
SOURCE
by Charles Bowen and David Peyton

THE MACINTOSH
by Bill O’Brien

MACINTOSH C PRIMER PLUS
by The Waite Group/Stephen W. Prata

THE NEW jr: A GUIDE TO IBM’S PCjr
by Winn L. Rosch

ORCHESTRATING SYMPHONY
by The Waite Group/Dan Shafer with
Mary Johnson

PC-DOS/MS-DOS

User’s Guide to the Most Popular Operating
System for Personal Computers

by Alan M. Boyd

POWER PAINTING: COMPUTER GRAPHICS
ON THE MACINTOSH

by Verne Bauman and Ronald Kidd/
illustrated by Gasper Vaccaro

SMARTER TELECOMMUNICATIONS
Hands-On Guide to On-Line Computer Services
by Charles Bowen and Stewart Schneider

SWING WITH JAZZ: LOTUS JAZZ ON THE
MACINTOSH
by Datatech Publications Corp./S. Michael McCarty

UNDERSTANDING EXPERT SYSTEMS
by The Waite Group/Mike Van Horn

USER’S GUIDE TO THE AT&T PC 6300
PERSONAL COMPUTER

by David B. Peatroy, Ricardo A. Anzaldua,
H. A. Wohlwend, and Datatech Publications
Corp.

COMMODORE 128

PROGRAMMER’S
REFERENCE GUIDE

COMMODORE BUSINESS MACHINES, INC.

-
® é‘ ¥

BANTAM BOOKS

COMMODORE 128 PROGRAMMER'S REFERENCE GUIDE
A Baniam Book | February 1986

C dore 64 and C lore 128 are registered trademarks of Commodore
Elecrronics. Lid.

CPiM and CP/M Plus Version 3.0 are registered trademarks of Digital Research
Inc.

Perfect is a registered trademark of Perfect Software.
TouchTone is a registered trademark of AT&T.
WordStar is a registered trademark of MicroPro International Corporation.

Grateful acknowledgment is made for permission to reprint two bars of Invention
13 {Inventio 13} by Johann Sebastian Bach. Sheet music copyright © C. F. Peters,
Corp., New York.

Book design by Ann Gold.

Cover design by Jo Ellen Temple.

All rights reserved.

Copyright © 1986 by Commodore Capital, Inc.

This book may not be reproduced in whole or in part, by
mimeograph or any other means, without permission.
For information address: Bantam Books, Inc.

ISBN 0-553-34292-4

Published simudtaneously in the United States and Canada

Bantam Books are published by Bantam Books, Inc. Its trademark, consisting of
the words ‘‘Bantam Books™ and the portrayal of a rooster, is Registered in U.S.
Patent and Trademark Office and in other countries. Marca Registrada. Bantan
Books, Inc., 666 Fifth Avenue, New York, New York 10103,

PRINTED IN THE UNITED STATES OF AMERICA

HL 0% 8 7 6 5 43

CONTENTS

“““““ Chapter 1
Introduction 1

Chapter 2
BASIC Building Blocks and BASIC 7.0 Encyclopedia 11

Chapter 3
““““ ‘ One Step Beyond Simple BASIC !

Chapter 4
Commodore 128 Graphics Programming 109

Chapter 5
Machine Language on the Commodore 128 123

Chapter 6
How to Enter Machine Language Programs Into the
Commodore 128 181

Chapter 7
Mixing Machine Language and BASIC 197

Chapter 8
The Power Behind Commodore 128 Graphics 207

Chapter 9
Sprites 265

Chapter 10
Programming the 80-Column (8563) Chip 291

Chapter 11
Sound and Music on the Commodore 128 335

Chapter 12

Chapter 13

The Commodore 128 Operating System 401
Chapter 14
CP/M 3.0 on the Commodore 128 477
Chapter 15
The Commodore 128 and Commodore 64 Memory Maps 501
Chapter 16
C128 Hardware Specifications 555
Appendixes 643
Glossary 731

Index 739

ACKNOWLEDGMENTS

Written by Larry Greenley

and

Fred Bowen

Bil Herd

Dave Haynie

Terry Ryan

Von Ertwine

Kim Eckert

Mario Eisenbacher

Norman McVey

The authors are deeply indebted to the many people who have contributed to the
preparation of this book. Special thanks go to Jim Gracely of Commodore Publications,
who reviewed the entire manuscript for technical accuracy and provided important
corrections, clarifications, and user-oriented suggestions, and to Steve Beats and Dave
Middleton of Commodore Software Engineering for their programming assistance and
expertise.

We also want to recognize the contributions of Frank Palaia of Commodore Hardware
Design, who provided expertise in the operation of the Z80 hardware, and of Dave
DiOrio of Commodore Integrated Circuit Design, who provided insight into the design
of the Memory Management Unit and the C128 VIC chip enhancements.

For their extensive technical reviews of the manuscript, we wish to thank Bob Albright,
Pete Bowman, Steve Lam and Tony Porrazza of Commodore Engineering. We also
thank Dan Baker, Dave Street and Carolyn Scheppner of Commodore Software Techni-
cal Support for providing an always available source of technical assistance. In addition,
we want to acknowledge the valuable contributions of members of Commodore Soft-
ware Quality Assurance, especially Mike Colligon, Karen Mackenzie, Pat McAllister,
Greg Rapp, Dave Resavy, and Stacy English.

We also thank Carol Sullivan and Donald Bein for carefully proofreading various
sections of the text, Michelle Dreisbach for typing the manuscript, Marion Dooley for
preparing the art, Jo-Ellen Temple for the cover design, and Nancy Zwack for overall
coordination assistance.

Finally, we would like to acknowledge the unflagging support and guidance provided by
senior Commodore executives Paul Goheen, Harry McCabe and Bob Kenney.

INTRODUCTION

The Commodore 128 Personal Computer is a versatile, multimode computer. The
Commodore 128 is the successor to the commercially successful Commodore 64 com-
puter. The principal features of the Commodore 128 are:

128K bytes of RAM, optionally expandable to 256K or 640K
80-column horizontal screen display

Hardware and software compatibility with Commodore 64
CP/M 3.0 operation

Enhanced BASIC language

As this Guide shows, the Commodore 128 has many other new or expanded
capabilities and features. Those listed above, however, are the most significant when
assessing the Commodore 128’s capabilities against those of the Commodore 64 and
other microcomputers.

The Commodore 128 is actually three computers in one, with the following three
primary operating modes:

B C128 Mode
B C64 Mode
B CP/M Mode

Two of these primary modes (C128 and CP/M) can operate using either a 40- or
80-column screen display. Following is a summary of the major features of each of the
three primary operating modes.

C128 MODE

In C128 Mode, the Commodore 128 Personal Computer provides the capabilities and
memory needed to run sophisticated applications, such as word processing, spreadsheets,
and database programs.

C128 Mode features include:

B 8502 processor running at 1.02 or 2.04 MHz

B New, enhanced C128 Kernal

B Built-in machine language monitor

B Commodore BASIC 7.0 language, with over 140 commands and functions

B Special new BASIC 7.0 commands that provide better, quicker and easier ways
to create complex graphics, animation, sound and music programs

B 40-column text and bit map screen output using VIC II chip

B 80-column text screen output using 8563 chip

INTRODUCTION

NOTE: The 40- and 80-column screen displays can be used either singly
or simultaneously with two monitors.

B Sound (three voices) using SID chip

® A 92-key keyboard that includes a full numeric keypad and ESCAPE, TAB,
ALT, CAPS LOCK, HELP, LINE FEED, 40/80 DISPLAY, and NO SCROLL
keys

B Access to the full capabilities of the new peripheral devices from Commodore
(1571 fast disk drive, 1902 dual 40/80-column RGBI monitor, etc.)

B Access to all standard Commodore serial peripherals

B RAM expansion to 256 or 640K with optional RAM expansion modules

Cé64 MODE

In C64 Mode, the Commodore 128 retains all the capabilities of the Commodore 64,
thus allowing you to use the wide range of available Commodore 64 software.
C64 Mode features include:

8502 processor running at 1.02 MHz

Standard C64 Kernal

BASIC 2.0 language

64K of RAM

40-column output using VIC II chip

Sound (three voices) using SID chip

Standard Commodore 64 keyboard layout except for function keys

All standard Commodore 64 keyboard functions

Access to all Commodore 64 graphics, color and sound capabilities, used
as on a Commodore 64

Compatibility with standard Commodore 64 peripherals, including user port and
serial devices, Datassette, joysticks, composite video monitors, and RF
(TV) output devices

NOTE: The 1571 disk drive will function in C64 Mode, but only
at standard 1541 speed. C64 compatibility requirements make it impossi-
ble for the 1571 to operate in C64 Mode at fast speed.

CP/M MODE

In CP/M Mode, an onboard Z80 microprocessor gives you access to the capabilities of
Digital Research’s CP/M Version 3.0, plus a number of new capabilities added by Commodore.
CP/M Mode features include:

Integral Z80 processor running at 2.04 MHz

Disk-based CP/M 3.0 System

128K bytes of RAM (in 64K banks)

40-column screen output using VIC Il chip

80-column screen output using 8563 chip

Access to the full keyboard, including the numeric keypad and special keys
Access to the new fast serial disk drive (1571) and the standard serial peripherals
Ability to redefine almost any key

Ability to emulate several terminals (Lear-Siegler ADM31, ADM3A)
Support for various MFM disk formats (IBM, Kaypro, Epson, Osborne)
RAM expansion to 256 or 640K RAM with optional RAM expansion modules

The incorporation of CP/M 3.0 (also called CP/M Plus) into the Commodore 128
makes thousands of popular commercial and public domain software programs available
to the user.

HARDWARE COMPONENTS

The Commodore 128 Personal Computer incorporates the following major hardware
components:

PROCESSORS

8502: Main processor in C128, C64 Modes; /O support for CP/M; 6502 software-
compatible; runs at 1.02 or 2.04 MHz
Z80: CP/M Mode only; runs at 2.04 MHz

MEMORY

ROM: 64K standard (C64 Kernal plus BASIC; C128 Kernal plus BASIC, character
ROMs and CP/M BIOS); one 32K slot available for software
RAM: 128K in two 64K banks; 16K display RAM for 8563 video chip; 2K X 4 Color RAM

VIDEO

8564: 40-column video (separate versions for NTSC and PAL TV standards)
8563: 80-column video

INTRODUCTION 5

SOUND

6581: SID Chip

INPUT/OUTPUT

6526: Joystick ports/keyboard scan/cassette
6526: User and serial ports

MEMORY MANAGEMENT

892]: PLA (C64 plus C128 mapping modes)
8922: MMU (Custom gate array)

For details on these and other hardware components see Chapter 16, Commodore
128 Hardware Specifications.

COMPATIBILITY WITH
COMMODORE 64

The Commodore 128 system is designed as an upgrade to the Commodore 64. Accord-
ingly, one of the major features of the Commodore 128 design is hardware and software
compatibility with the Commodore 64 when operating in C64 Mode. This means that in
C64 Mode the Commodore 128 is capable of running Commodore 64 application
software. Also, the Commodore 128 in C64 Mode supports Commodore 64 peripherals
except the CP/M 2.2 cartridge. (NOTE: The Commodore 128’s built-in CP/M 3.0
capability supersedes that. provided by the external cartridge. This cartridge should not
be used with the Commodore 128 in any mode.)

The C128 Mode is designed as a compatible superset to the C64. Specifically, all
Kernal functions provided by the Commodore 64 are provided in the C128 Kernal.
These functions are also provided at the same locations in the jump table of the C128
Kernal to provide compatibility with existing programs. Zero page and other system
variables are maintained at the same addresses they occupy in C64 Mode. This simpli-
fies interfacing for many programs.

Providing Commodore 64 compatibility means that the new features of the Com-
modore 128 cannot be accessed in C64 Mode. For example, compatibility and memory
constraints preclude modifying the C64 Mode Kernal to support the 1571 fast serial disk
drive. As noted previously, C64 Mode sees this drive as a standard serial disk drive. For
the same reason, C64 Mode does not have an 80-column screen editor, and C64 Mode
BASIC 2.0 cannot use the second 64K bank of memory.

SWITCHING FROM MODE TO MODE

As mentioned before, in the C128 and CP/M Modes the Commodore 128 can provide
both 40-column and 80-column screen displays. This means that the Commodore 128
actually has five operating modes, as follows:

C128 Mode with 80-column display
C128 Mode with 40-column display
C64 Mode (40-column display only)
CP/M Mode with 80-column display
CP/M Mode with 40-column display

Figure 1-1 summarizes the methods used to switch from mode to mode.

FROM
TO
OFF C128 C128 C64 CP/M CPM
40 COL 80 COL 40 COL 80 COL
Cli28 1. Check that 1. Press ESC 1. Check that 1. Check that 1. Check that
40 cOL 40/80 key key; 40/80 key 40/80 key 40/80 key
is UP. release. is UP. is UP. is UP.

2. Make sure 2. Press X 2. Turmn com- 2. Tum com- 2. Tum com-
that: key. puter OFF, puter OFF, puter OFF,
a)No CP/M OR then ON. then ON. then ON.

system 1. Check that 3. Remove

disk is 40/80 key cartridge

in drive is UP. if present
b)No Cé4 2. Press

cartridge RESET

is in ex- button.

pansion

port

3. Turn com-
puter ON.

Cl28 1. Press . Press 1. Press 1. Press 1. Check that
80 COL 40/80 key ESC key; 40/80 key 40/80 key 40/80 key
DOWN. release. DOWN. DOWN. is DOWN.
2. Turn com- 2. Press X 2. Turn com- 2. Remove 2. Remove
puter ON. key. puter OFF, CP/M sys- CP/M sys-
OR then ON. tem disk tem disk
. Press 3. Remove from from
40/80 key cartridge drive, if drive, if
DOWN. if present. necessary. necessary.
. Press 3. Tumn com- 3. Tum com-
RESET puter OFF, puter OFF,
button. then ON. then ON.

Figure |~{. Commodore 128 Mode Switching Chart

INTRODUCTION

FROM
TO
OFF C128 C128 Ce4d CP/M CPM
40 COL 80 COL 40 COL 80 COL
Cé4 1. Hold 1. Type GO 1. Type GO 1. Tum com- }. Tum com-
€ key 64; press 64; press puter OFF. puter OFF.
DOWN. RETURN. RETURN. 2. Check that 2. Check that
2. Tum com- 2. The com- 2. The com- 40/80 key 40/80 key
puter ON. puter re- puter re- is UP. is UP.
OR sponds: sponds: 3. Hold 3. Hold
1. Insert C64 ARE YOU ARE YOU DOWN DOWN
cartridge. SURE? SURE? G key Cc key
2. Tum com- Type Y; Type Y; while while tumn-
puter ON. press press turning ing com-
RETURN. RETURN. computer puter ON.
ON. OR
OR 1. Tum com-
1. Turn com- puter OFF.
puter OFF. 2. Insert C64
2. Insert C64 cartridge.
cartridge. 3. Tum
3. Tum power
power ON. ON.
CP/M 1. Tum disk 1. Tum disk 1. Tumdisk 1. Check that 1. Insert
40 COL drive ON. drive ON. drive ON. 40/80 key CP/M util-
2. Insert 2. Insert 2. Insert is UP. ities disk
CP/M sys- CP/M sys- CP/M sys- 2. Turn disk in drive.
tem disk tem disk tem disk drive ON. 2. At screen
in drive. in drive. in drive. 3. Insert prompt,
3. Check that 3. Check that 3. Check that CP/M sys- A> type:
40/80 key 40/80 key 40/80 key tem disk DEVICE
is UP. is UP. is UP. in drive. CONOUT: =
4. Tum com- 4. Type: 4. Type: 4. Tum com- 40 COL
puter ON. BOOT BOOT puter OFF. 3. Press
5. Press 5. Press RETURN.
RETURN. RETURN.
CP/M 1. Turndisk 1. Tum disk 1. Turn disk 1. Press I. Insert
80 COL drive ON. drive ON. drive ON. 40/80 key CP/M util-
2. Insert 2. Insert 2. Insert DOWN. ities disk
CP/M sys- CP/M sys- CP/M sys- 2. Turn disk in drive.
tem disk tem disk tem disk drive ON. 2. At screen
in drive. in drive. in drive. 3. Insert prompt,
3. Press 3. Press 3. Check that CP/M sys- A> type:
40780 key 40/80 key 40/80 key tem disk DEVICE
DOWN. DOWN. is DOWN. in drive. CONOUT =
4. Tum com- 4. Type: 4. Type: 4. Tumn com- 80 COL
puter ON. BOOT BOOT. puter OFF. 3. Press
5. Press 5. Press RETURN.
RETURN. RETURN.

Figure 1-1. Commodore

128 Mode Switching Chart (continued)

NOTE: If you are using a Commodore 1902 dual monitor, remember to
move the video switch on the monitor from COMPOSITE or SEPA-
RATED to RGBI when switching from 40-column to 80-column display;
reverse this step when switching from 80 to 40 columns. Also, when
switching between modes remove any cartridges from the expansion port.
You may also have to remove any disk (e.g., CP/M) from the disk drive.

CP/M 3.0 SYSTEM RELEASES

When you send in your C128 warranty card, your name will be added to a list
which makes you eligible for CP/M system release dates.

HOW TO USE THIS GUIDE

This guide is designed to be a reference tool that you can consult whenever you need
detailed technical information on the structure and operation of the Commodore 128
Personal Computer. Since many of the design features of the Commodore 128 can be
viewed from various aspects, it may be necessary to consult several different chapters to
find the information you want. Note that certain groups of chapters form logical sequences
that cover in detail an extended topic like BASIC, graphics, or machine language.

The following chapter summaries should help you pinpoint what chapter or
chapters are most likely to provide the answer to a specific question or problem.

CHAPTER 2. BASIC BUILDING BLOCKS AND BASIC 7.0 ENCYCLOPEDIA—
Defines and describes the structural and operational components of the BASIC
language, including constants, variables and arrays, and numeric and string ex-
pressions and operations.

CHAPTER 3. ONE STEP BEYOND SIMPLE BASIC—Provides routines (menu,
keyboard buffer, loading, programming function keys) and techniques (‘‘crunch-
ing’’ or saving memory; debugging and merging programs; relocating BASIC)
that can be incorporated in your own programs. Provides modem-related informa-
tion (how to generate TouchTone® frequencies. how to detect telephone ringing,
etc.) plus technical specifications for Commodore Modeny 1200 and Modem/300.

CHAPTER 4. COMMODORE 128 GRAPHICS PROGRAMMING—Describes the
general BASIC 7.0 graphics commands (COLOR, GRAPHIC, DRAW, LO-
CATE, BOX, CIRCLE, PAINT) and gives annotated examples of use, including
programs. Describes the structure and general function of the color modes and
character and bit map graphics modes that are fundamental to Commodore 128
graphics.

INTRODUCTION

CHAPTER 5. MACHINE LANGUAGE ON THE COMMODORE 128—Defines,
with examples, machine language (ML) and associated topics, including the
Kernal; the 8502 registers, binary and hexadecimal numbers, and addressing
modes. Defines, with examples, types of ML instructions (op codes, etc.).
Includes 8502 instruction and addressing table.

CHAPTER 6. HOW TO ENTER MACHINE LANGUAGE PROGRAMS INTO THE
COMMODORE 128-—Describes, with examples, how to enter ML programs by
using the built-in Machine Language Monitor or by POKEing decimal op-code
values with a BASIC program. Defines, with examples, the ML Monitor commands.

CHAPTER 7. MIXING MACHINE LANGUAGE AND BASIC—Describes, with
examples, how to combine BASIC and ML instructions in the same program by
using BASIC READ, DATA, POKE and SYS commands. Shows where to place
ML programs in memory.

CHAPTER 8. THE POWER BEHIND COMMODORE 128 GRAPHICS—Describes
the C128 Mode memory banking concept and tells how to manage banked
memory. Defines the use of shadow registers. Describes how screen, color and
character memory are handled in BASIC and machine language, for both character
and bit map modes. Shows how to redefine the character set. Describes use of
split-screen modes. Includes a tabular graphics programming summary.

CHAPTER 9. SPRITES—Describes programming of sprites or MOBs (movable object
blocks). Defines and shows how to use the BASIC 7.0 sprite-related commands
(SPRITE, SPRDEF, MOVSPR, SSHAPE, GSHAPE, SPRSAV). Provides anno-
tated examples of use, including programs.

CHAPTER 10. PROGRAMMING THE 80-COLUMN (8563) CHIP—Defines the
8563 registers and describes, with machine language examples, how to program
the 80-column screen in character and bit map modes.

CHAPTER 11. SOUND AND MUSIC ON THE COMMODORE 128—Defines the
BASIC 7.0 sound and music commands (SOUND, ENVELOPE, VOL, TEMPO,
PLAY, FILTER). Describes how to code a song in C128 Mode. Defines in detail
the Sound Interface Device (SID) and how to program it in machine language.

CHAPTER 12. INPUT/OUTPUT GUIDE—Describes software control of peripheral
devices connected through I/O ports, including disk drives, printers, other User
Port and Serial Port devices, the Datassette, and Controller Port devices. Provides
pin-out diagrams and pin descriptions for all ports.

CHAPTER 13. THE COMMODORE 128 OPERATING SYSTEM—Describes, with
examples, the operating system (Kernal), which controls the functioning of the
Commodore 128; includes the Kernal Jump Table, which lists the ROM entry
points used to call the Kernal routines; defines each Kernal routine; defines the
C128 Screen Editor. Describes the Memory Management Unit (MMU), defines
the MMU registers, tells how to select and switch banks in BASIC and ML, and
tells how to predefine memory configurations.

CHAPTER 14. CP/M 3.0 ON THE COMMODORE 128—Summarizes the Commo-
dore version of CP/M 3.0. Defines the general system layout and the operating
system components (CCP, BIOS and BDOS). Describes the Commodore enhance-
ments to CP/M 3.0. (Additional details on CP/M 3.0 are given in Appendix K.)

CHAPTER 15. COMMODORE 128 AND COMMODORE 64 MEMORY MAPS—
Provides detailed memory maps for C128 and C64 modes. (The Z80 memory
map is shown in Appendix K.)

CHAPTER 16. HARDWARE SPECIFICATIONS—Includes technical specifications for
Commodore 128 hardware components (8563, 8564, etc.).

APPENDIXES A through L—Provide additional technical information and/or a more
convenient grouping of information supplied elsewhere in the Guide (e.g., pinout
diagrams).

GLOSSARY—Provides standard definitions of technical terms.

2

BASIC
BUILDING
BLOCKS AND
BASIC 7.0
ENCYCLOPEDIA

The BASIC language is composed of commands. operators, constants, variables, arrays
and strings. Commands are instructions that the computer follows to perform an
operation. The other elements of BASIC perform a variety of functions, such as
assigning values to a quantity, passing values to the computer, or directing the computer
to perform a mathematical operation. This section describes the structure and functions
of the elements of the BASIC language.

COMMANDS AND STATEMENTS

By definition, commands and statements have the following distinctions. A command is
a BASIC verb which is used in immediate mode. It is not preceded by a program line
number and it executes immediately after the RETURN key is pressed. A statement is
a BASIC verb which is contained within a program and is preceded by a line number.
Program statements are executed with the RUN command followed by the RETURN key.

Most commands can be used within a program. In this case the command is
preceded by a line number and is said to be used in program mode. Many commands
also can be used outside a program in what is called direct mode. For example, LOAD
is an often-used direct mode command, but you can also include LOAD in a program.
GET and INPUT are commands that only can be used in a program; otherwise, an
ILLEGAL DIRECT ERROR occurs. While PRINT is usually included within a
program, you can also use PRINT in direct mode to output a message or numeric value
to the screen, as in the following example:

PRINT ‘‘The Commodore 128" RETURN

Notice that the message is displayed on the screen as soon as you press the return
key. The following two lines display the same message on the screen. The first line is a
program mode statement; the second line is a direct mode command.

10 PRINT “*The Commodore 128 RETURN
RUN RETURN

[t is important to know about the concepts behind memory storage before examin-
ing the Commodore BASIC language in detail. Specifically, you need to understand
constants, variables and arrays.

NUMERIC MEMORY STORAGE:
CONSTANTS, VARIABLES AND ARRAYS

There are three ways to store numeric information in Commodore BASIC. The first way
is to use a constant. A constant is a form of memory storage in which the contents
remain the same throughout the course of a program. The second type of memory
storage unit is a variable. As the name indicates, a variable is a memory storage cell in

BASIC BUILDING BLOCKS AND BASIC 7.0 ENCYCLOPEDIA

which the contents vary or change throughout the course of a program. The last way to store
information is to use an array, a series of related memory locations consisting of variables.

Each of these three units of memory storage can have three different types of
information or data assigned. The three data types are INTEGER, FLOATING-POINT
or STRING. Integer data is numeric, whole number data—that is, numbers without
decimal points. Floating-point is numeric data including fractional parts indicated with a
decimal point. String data is a sequential series of alphanumeric letters, numbers and
symbols referred to as character strings. The following paragraphs describe these three
data types and the way each memory storage unit is assigned different data type values.

CONSTANTS: INTEGER,
FLOATING-POINT AND STRING

INTEGER CONSTANTS

The value assigned to a constant remains unchanged or constant throughout a program.
Integer constants can contain a positive or negative value ranging from -32768 through
+32767. If the plus sign is omitted, the CI28 assumes that the integer is positive.
Integer constants do not contain commas or decimal points between digits. Leading
zeros are ignored. Integers are stored in memory as two-byte binary numbers, which
means a constant requires 16 bits or two bytes of memory to store the integer as a base
two number. The following are examples of integer constants:

I

1000
=32

0
-32767

FLOATING-POINT CONSTANTS

Floating-point constants contain fractional parts that are indicated by a decimal
point. They do not contain commas to separate digits. Floating-point constants may be
positive or negative. If the plus sign is omitted, it is assumed that the number is
positive. Again, leading zeros are unnecessary and ignored. Floating-point constants are
represented in two ways depending on their value:

1. Simple Number Notation
2. Scientific Notation

In simple number notation, the floating-point number is calculated to ten digits of
precision and stored using five bytes, but only nine digits are displayed on the screen or
printer. If the floating-point number is greater than nine digits, it is rounded according to
the tenth digit. If the tenth digit is greater than five, the ninth digit is rounded to the next
higher digit. If the tenth digit is less than five, the ninth digit is rounded to the next
lower digit. The rounding of floating-point numbers may become a factor when calculat-

ing values based upon floating-point numbers greater than nine digits. Your program
should test floating-point results and take them into consideration when basing these
values on future calculations.

As mentioned, floating-point numbers are displayed as nine digits. If the value of a
floating-point constant is less than .01 or greater than 999999999, the number is
displayed on the screen or printer in scientific notation. For example, the number
12345678901 is displayed as 1.23456789E + 10. Otherwise, the simple number notation
is displayed. A floating-point constant in scientific notation appears in three parts:

1. The mantissa is the leftmost number separated by a decimal point.

2. The letter E indicates that the number is displayed in exponential (scientific)
notation.

3. The exponent specifies the power of ten to which the number is raised and the
number of places the decimal point is moved in order to represent the number
in simple number notation.

The mantissa and exponent can be positive or negative. The exponent can be
within the range -39 to +38. If the exponent is negative, the decimal point moves to
the left representing it as a simple number. If the exponent is positive, the decimal
point moves to the right representing it in simple number notation.

The Commodore 128 limits the size of floating-point numbers. The highest
number you can represent in scientific notation is 1.70141183E+38. If you try to
represent a number larger than that, an OVERFLOW ERROR occurs. The smallest
number you can represent in scientific notation is 2.93873588E-39. If you try to
represent a number smaller than that, no error occurs but a zero is returned as the value.
You should therefore test floating-point values in your programs if your calculations are
based on very small numbers and the results depend on future calculations. Here are
examples of floating-point constants in simple number notation and others in scientific
notation:

SIMPLE NUMBER SCIENTIFIC
9.99 22.33E+20
0234 99999.234E-23
+10.01 —45.89E-11
-90.23 -3.14E + 17

NOTE: The values in either column are not equivalent.

STRING CONSTANTS

A string constant, as mentioned, is a sequential series of alphanumeric characters
(numbers, letters and symbols). A string constant can be as long as a 160-character input

BASIC BUILDING BLOCKS AND BASIC 7.0 ENCYCLOPEDIA

line, minus the line number and any other information appearing on that program line.
By concatenating strings together, you may form a string as long as 255 characters. The
string may contain numbers, letters, and even decimal points and commas. However,
the string cannot contain the double quote (**) character, since this character delimits or
marks the beginning or ending of the string. You can represent a double quote character
within a string using CHR$(34). You can omit the closing double quote character of a
string if it is the last statement in a line of a program,

A string can even be assigned a null value, meaning no characters are actually
assigned to it. Assign a string a null value by omitting characters between the double
quotes and follow the opening double quote directly with a closing double quote. Here
are some examples of string constants:

“*Commodore 128"
“qwer1234!#$%(0) ..,
" (null string)

““John and Joan™

VARIABLES: INTEGER,
FLOATING-POINT AND STRING

Variables are units of memory storage that represent varying data values within a
program. Unlike constants, variables may change in value throughout the course of a
program. The value assigned to a variable can be an integer, a floating-point number, or
a string. You can assign a value to a variable as the result of a mathematical calculation.
Variables are assigned values using an equals sign. The variable name appears to the left
of the equals sign and the constant or calculation appears to the right. When you refer to
a variable in a program before you assign it a value, the variable value becomes zero if
it is an integer or floating-point number. It becomes a null string if the variable is a
string.

Variable names can be any length, but for efficiency you should limit the size
of the variable to a few characters. Only the first two characters of a variable name
are significant. Therefore, do not begin the names of two different variables with
the same two characters. If you do, the C128 will interpret them as the same variable
name.

The first character of a variable name must be a letter. The rest of the
variable name can be any letter or number from zero to nine. A variable name
must not contain any BASIC keyword. If you include a BASIC keyword in
a variable name, a SYNTAX ERROR occurs. BASIC keywords include all
BASIC statements, commands, function names, logical operator names and reserved
variables.

You can specify the data type of a variable by following the variable name with
a percent sign (%) if the variable is an integer value, or a dollar sign if the
variable is a string. If no character is specified, the CI128 assumes that the variable
value is a floating-point number. Here are some examples of variables and how they are
assigned:

A = 3.679 (floating-point)
7% = 714 (integer)

F$ = “‘CELEBRATE THE COMMODORE 128"’ (string)
T = A + Z% (floating-point)
Count % = Count % + 1 (integer)
G$ = “‘SEEK A HIGHER LEVEL OF CONSCIOUSNESS”’ (string)

H$ = F$ + GS$ (string)

ARRAYS: INTEGER,
FLOATING-POINT AND STRING

Although arrays were defined earlier in this chapter as series of related variables or
constants, you refer to them with a single integer, floating point or string variable name.
All elements have the same data type as the array name. To access successive elements
within the array, BASIC uses subscripts (indexed variables) to refer to each unique storage
compartment in the array. For example, the alphabet has twenty-six letters. Assume an
array called ““ALPHA"’ is constructed and includes all the letters of the alphabet. To
access the first element of the array, which is also the first letter of the alphabet (A),
label Alpha with a subscript of zero:

ALPHAS(0) A

To access the letter B, label Alpha with a subscript of one:
ALPHAS(1) B

Continue in the same manner to access all of the elements of the array ALPHA, as in
the following:

ALPHAS$(2) C
ALPHAS$(3) D
ALPHAS$(4) E
ALPHAS(5) Z

Subscripts are a convenient way to access elements within an array. If subscripts
did not exist, you would have to assign separate variables for all the data that would
normally be accessed with a subscript. The first subscript within an array is zero.

Although arrays are actually stored sequentially in memory, they can be multi-
dimensional. Tables and matrices are easily manipulated with two-dimensional arrays.
For example, assume you have a matrix with ten rows and ten columns. You need 100
storage locations or array elements in order to store the whole matrix. Even though
your matrix is ten by ten, the elements in the array are stored in memory one
after the other for 100 hundred locations.

You specify the number of dimensions in the arrays with the DIM statement. For
example:

BASIC BUILDING BLOCKS AND BASIC 7.0 ENCYCLOPEDIA

10 DIM A(99)

dimensions a one-dimensional floating-point array with 100 elements. The following are
examples of two-, three- and four-dimensional integer arrays:

20 DIM B(9, 9) (100 elements)
30 DIM C(20,20,20) (9261 elements)
40 DIM D(10,15,15,10) (30976 elements)

In theory the maximum number of dimensions in an array is 255, but you cannot
fit a DIMension statement that long on a 160-character line. The maximum number of
DIMension statements vou can fit on a 160-character line is approximately fifty. The
maximum number of elements allowed in each dimension is 32767. In practice, the size
of an array is limited to the amount of available memory. Most arrays are one-, two- or
three-dimensional. If an array contains fewer than ten elements, there is no need for a
DIM statement since the C128 automatically dimensions variable names to ten elements.
The first time you refer to the name of the undimensioned array (variable) name, the
C128 assigns zero to the value if it is a numeric array, or a null string if it is a string
array.

You must separate the subscript for each dimension in your DIMension statement
with a comma. Subscripts can be integer constants, variables, or the integer result of an
arithmetic operation. Legal subscript values can be between zero and the highest
dimension assigned in the DIMension statement. If the subscript is referred to outside of
this range, a BAD SUBSCRIPT ERROR results.

The type of array determines how much memory is used to store the integer,
floating-point or string data.

Floating-point string arrays take up the most memory; integer arrays require the
least amount of memory. Here’s how much memory each type of array requires:

5 bytes for the array name
+ 2 bytes for each dimension
+ 2 bytes for each integer array element
OR + 5 bytes for each floating-point element
OR + 3 bytes for each string element
AND + | byte per character in each string element

Keep in mind the amount of storage required for cach type of array. If you only
need an integer array, specify that the array be the integer type, since floating-point

arrays require much more memory than does the integer type.

Here are some example arrays:

AS$(0)=“"GROSS SALES” (string array)
MTH$(K%) =" ‘JAN" (string array)
G2%(X) =5 (integer array)

CNT%(G2%(X))=CNT%(1)-2 (integer array)
FP(12*%K%) =248 (floating-point array)

SUM(CNT%(1)) =FP*K% (floating-point array)

A5)=0 Sets the 5th element in the 1 dimensional array
called “*A”" equal to O

B(5,6)=26 Sets the element in row position 5 and column
position 6 in the 2 dimensional array called **B”’
equal to 26

C(1,2,3)=100 Sets the element in row position 1, column

position 2, and depth position 3 in the 3 dimen-
sional array called **C"” equal to 100

EXPRESSIONS AND OPERATORS

Expressions are formed using constants, variables and/or arrays. An expression can be a
single constant, simple variable, or an array variable of any type. It also can be a
combination of constants and variables with arithmetic, relational or logical operators
designed to produce a single value. How operators work is explained below. Expres-
sions can be separated into two classes:

1. ARITHMETIC
2. STRING

Expressions have two or more data items called operands. Each operand is
separated by a single operator to produce the desired result. This is usually done by
assigning the value of the expression to a variable name.

An operator is a special symbol the BASIC Interpreter in your Commodore 128
recognizes as representing an operation to be performed on the variables or constant
data. One or more operators, combined with one or more variables and/or constants
form an expression. Arithmetic, relational and logical operators are recognized by
Commodore 128 BASIC.

ARITHMETIC EXPRESSIONS

Arithmetic expressions yield an integer or floating-point value. The arithmetic operators
(+,-.%/, 1) are used to perform addition, subtraction, multiplication, division and
exponentiation operations, respectively.

ARITHMETIC OPERATIONS

An arithmetic operator defines an arithmetic operation which is performed on the two
operands on either side of the operator. Arithmetic operations are performed using
floating-point numbers. Integers are converted to floating-point numbers before an
arithmetic operation is performed. The result is converted back to an integer if it is
assigned to an integer variable name.

BASIC BUILDING BLOCKS AND BASIC 7.0 ENCYCLOPEDIA

ADDITION (+)
The plus sign (+) specifies that the operand on the right is added to the operand on the
left.

EXAMPLES:

242
A+B+C
X%+ 1

BR + 10E-2

SUBTRACTION (-)

The minus sign (-) specifies that the operand on the right is subtracted from the operand
on the left.

EXAMPLES:

4-1
10064
A-B

55-142

The minus also can be used as a uriary minus which is the minus sign in front of a
negative number. This is equal to subtracting the number from zero (0).

EXAMPLES:

-5

-9E4

-B

4—(-2) (same as 4+ 2)

MULTIPLICATION (*)

An asterisk (*) specifies that the operand on the left is multiplied by the operand on the
right.

EXAMPLES:

100*2
50%0
A*X]1
R%*14

DIVISION (/)

The slash (/) specifies that the operand on the left is divided by the operand on the
right.

EXAMPLES:

10/2
640074
A/B
4E2/XR

EXPONENTIATION (1)

The up arrow (1) specifies that the operand on the left is raised to the power specified
by the operand on the right (the exponent). If the operand on the right is a 2, the number
on the left is squared; if the exponent is a 3, the number on the left is cubed, etc. The
exponent can be any number as long as the result of the operation gives a valid
floating-point number.

EXAMPLES:

212 Equivalent to 2%2

313 Equivalent to 3*3*3

414 Equivalent to 4*4%4%*4
AB 1 CD

31 -2 Equivalent to V3%V

RELATIONAL OPERATORS

The relational operators (<, =,>,<<= >= <) are primarily used to compare the
values of two operands, but they also produce an arithmetic result. The relational
operators and the logical operators (AND, OR, and NOT), when used in comparisons,
produce an arithmetic true/false evaluation of an expression. If the relationship stated in
the expression is true, the result is assigned an integer value of —1. If it’s false a value of
0 is assigned. Following are the relational operators:

< LESS THAN
= EQUAL TO

> GREATER THAN

<= LESS THAN OR EQUAL TO

>= GREATER THAN OR EQUAL TO
<> NOT EQUAL TO

EXAMPLES:

5-4=1 result true (-1)
14>66 result false (0)
15> =15 result true (-1)

Relational operators may be used to compare strings. For comparison purposes,
the letters of the alphabet have the order A<B<C<D, etc. Strings are compared by

BASIC BUILDING BLOCKS AND BASIC 7.0 ENCYCLOPEDIA 21

evaluating the relationship between corresponding characters from left to right (see
string operations).

EXAMPLES:

ATV <CBY O result true (-1)
“X = YY" result false (0)
BB$ <> CC$ result false (0) if they are the same

Numeric data items can only be compared (or assigned) with other numeric items.
The same is true when comparing strings; otherwise, the BASIC error message ?TYPE
MISMATCH occurs. Numeric operands are compared by first converting the values of
either or both operands from integer to floating-point form, as necessary. Then
the relationship between the floating-point values is evaluated to give a true/false
result.

At the end of all comparisons, you get an integer regardless of the data type
of the operand (even if both are strings). Because of this, a comparison of two
operands can be used as an operand in performing calculations. The result will
be -1 or O and can be used as anything but a divisor, since division by zero is
illegal.

LOGICAL OPERATORS

The logical operators (AND, OR, NOT) can be used to modify the meaning of the
relational operators or to produce an arithmetic result. Logical operators can produce
results other than -1 and 0, although any nonzero result is considered true when testing
for a true/false condition.

The logical operators (sometimes called Boolean operators) also can be used to
perform logical operations on individual binary digits (bits) in two operands. But when
you’re using the NOT operator, the operation is performed only on the single operand to
the right, The operands must be in the integer range of values (-32768 to +32767)
(floating-point numbers are converted to integers) and logical operations give an integer
result.

Logical operations are performed bit-by-corresponding-bit on the two operands.
The logical AND produces a bit result of 1 only if both operand bits are 1. The logical
OR produces a bit result of 1 if either operand bit is 1. The logical NOT is the opposite
value of each bit as a single operand. In other words, **If it’s NOT 1 then it is 0. If it’s
NOT O then it is 1.

The exclusive OR IF (XOR) doesn’t have a logical operator but it is performed as
part of the WAIT statement or as the XOR function. Exclusive-OR means that if the
bits of two operands are set and equal, then the result is 0; otherwise the resuit is 1.

Logical operations are defined by groups of statements which, when taken to-
gether, constitute a Boolean “‘truth table”” as shown in Table 2-1.

The AND operation results in a 1 only if both bits are 1:
1AND 1=1
0AND 1=0
1AND 0=0
0 AND 0=0

The OR operation results in a 1 if either bit is 1:
10R 1=1
OOR1=1
10R 0=1
0OR0=0

The NOT operation logically complements each bit:
NOT 1=0
NOT 0=1

The exclusive OR (XOR) is a function (not a logical operator):
1XOR 1=0
1 XOR0=1
0XOR 1=1
0 XOR0=0

Table 2-1 Boolean Truth Table

The logical operators AND, OR and NOT specify a Boolean arithmetic operation
to be performed on the two operand expressions on either side of the operator. In the
case of NOT, only the operand on the right is considered. Logical operations (or
Boolean arithmetic) aren’t performed until all arithmetic and relational operations in an
expression have been evaluated.

EXAMPLES:

IF A=100 AND B=100 THEN 10 (if both A and B have a value of 100 then
the result is true)

A=96 AND 32: PRINT A (A=32)
IF A=100 OR B =100 THEN 20 (if A or B is 100 then the result is true)
A=64 OR 32: PRINT A (A=96)
X=NOT 96 (result is 97 (two’s complement))

HIERARCHY OF OPERATIONS

All expressions perform the different types of operations according to a fixed hierarchy.
Certain operations have a higher priority and are performed before other operations. The
normal order of operations can be modified by enclosing two or more operands within

BASIC BUILDING BLOCKS AND BASIC 7.0 ENCYCLOPEDIA

23

parentheses (), creating a ‘‘subexpression.”’ The parts of an expression enclosed in pa-
rentheses will be reduced to a single value before evaluating parts outside the parentheses.

When you use parentheses in expressions, pair them so that you always have an
equal number of left and right parentheses. If you don’t, the BASIC error message
?SYNTAX ERROR will occur.

Expressions that have operands inside parentheses may themselves be enclosed in
parentheses, forming complex expressions of multiple levels. This is called nesting.
Parentheses can be nested in expressions to a maximum depth of ten levels—ten
matching sets of parentheses. The innermost expression has its operations performed
first. Some examples of expressions are:

A+B

C1(D+E)2

(X-C1 (D+E)2)*10)+ 1
GG$>HHS

JI$ + “MORE”’

K%=1 AND M<>X

K%=2 OR (A=B AND M<X)
NOT (D =E)

The BASIC Interpreter performs operations on expressions by performing arithme-
tic operations first, then relational operations, and logical operations last. Both arithme-
tic and logical operators have an order of precedence (or hierarchy of operations) within
themselves. Relational operators do not have an order of precedence and will be
performed as the expression is evaluated from left to right.

If all remaining operators in an expression have the same level of precedence, then
operations are performed from left to right. When performing operations on expressions
within parentheses, the normal order of precedence is maintained. The hierarchy of
arithmetic and logical operations is shown in Table 2-2 from first to last in order of
precedence. Note that scientific notation is resolved first.

OPERATOR DESCRIPTION EXAMPLE
i Exponentiation BASE 7T EXP
- Negation (Unary Minus) -A
*/ Multiplication AB * CD
Division EF / GH
+ Addition CNT + 2
- Subtraction JK - PQ
> =< Relational Operations A<=B
NOT Logical NOT NOT K%
(Integer Two’s Complement)
AND Logical AND JK AND 128
OR Logical OR PQ OR 15

Table 2-2 Hierarchy of Operations Performed on Expressions

STRING OPERATIONS

Strings are compared using the same relational operators (=, <>, <=, >=,6 <,>)
that are used for comparing numbers. String comparisons are made by taking one
character at a time (left-to-right) from each string and evaluating each character
code position from the character set. If the character codes are the same, the char-
acters are equal. If the character codes differ, the character with the lower CBM ASCII
code number is lower in the character set. The comparison stops when the end of either
string is reached. All other factors being equal, the shorter string is considered less than
the longer string. Leading or trailing blanks are significant in string evaluations.

Regardless of the data types, all comparisons yield an integer result. This is
true even if both operands are strings. Because of this, a comparison of two string
operands can be used as an operand in performing calculations. The result will
be —1 or 0 (true or false) and can be used in any mathematical operation but division
since division by zero is illegal.

STRING EXPRESSIONS

Expressions are treated as if an implied **<<>0"" follows them. This means that if an
expression is true, the next BASIC statement on the same program line is executed. If
the expression is false, the rest of the line is ignored and the next line in the program is
executed.

Just as with numbers, you can perform operations on string variables. The only
arithmetic string operator recognized by BASIC 7.0 is the plus sign (+) which is used
to perform concatenation of strings. When strings are concatenated, the string on the
right of the plus sign is appended to the string on the left, forming a third string. The
result can be printed immediately, used in a comparison, or assigned to a variable name.
[f a string data item is compared with (or set equal to) a numeric item, or vice-versa, the
BASIC error message ?TYPE MISMATCH occurs. Some examples of string expres-
sions and concatenation are:

10 A$="FILE": B§ = “*"NAME"’
20 NAMS = AS + BS (yields the string ““FILENAME"’)
30 RES$ = “NEW” + AS$ + B$ (yields the string **‘NEWFILENAME™")

ORGANIZATION OF THE
BASIC 7.0 ENCYCLOPEDIA

This section of Chapter 2 lists BASIC 7.0 language elements in an encyclopedia
format. [t provides an abbreviated list of the rules (syntax) of Commodore 128
BASIC 7.0, along with a concise description of each. Consult the Commodore 128
System Guide BASIC 7.0 Encyclopedia (Chapter 5) included with your computer for a

BASIC BUILDING BLOCKS AND BASIC 7.0 ENCYCLOPEDIA

25

more detailed description of each command. BASIC 7.0 includes all the elements of

BASIC 2.0.

The different types of BASIC operations are listed in individual sections, as

follows:

|. Commands and Statements: the commands used to edit, store and erase
programs, and the BASIC program statements used in the numbered lines of a

program.

2. Functions: the string, numeric and print functions.
3. Reserved Words and Symbols: the words and symbols reserved for

purpose.

use by the BASIC 7.0 language, which cannot be used for any other

COMMAND AND
STATEMENT FORMAT

The command and statement definitions in this encyclopedia are arranged in the follow-

ing format:

Command name—

Brief definition—
Command format—

Discussion of
format and use-—

EXAMPLES:

Example(s)—

AUTO

Enable/disable automatic line numbering
AUTO [line#]

This command turns on the automatic line-numbering feature.
This eases the job of entering programs, by automatically typing
the line numbers for the user. As each program line is entered by
pressing RETURN, the next line number is printed on the screen,
and the cursor is positioned two spaces to the right of the line
number. The line number argument refers to the desired incre-
ment between line numbers. AUTO without an argument turns off
the auto line numbering, as does RUN. This statement can be
used only in direct mode (outside of a program).

AUTO 10 Automatically numbers program lines in incre-
ments of 10.

AUTO 50 Automatically numbers lines in increments of 50.

AUTO Turns off automatic line numbering.

The boldface line that defines the format consists of the following elements:

DLOAD ‘‘program name”’ [,D0,U8]
7 7

keyword argument additional arguments
(possibly optional)

The parts of the command or statement that must be typed exactly as shown are in
capital letters. Words the user supplies, such as the name of a program, are not
capitalized.

When quote marks (** *") appear (usually around a program name or filename), the
user should include them in the appropriate place, according to the format example.

POERR]

Keywords are words that are part of the BASIC language. They are the central part of a
command or statement, and they tell the computer what kind of action to take.
These words cannot be used as variable names. A complete list of reserved words
and symbols is given at the end of this chapter.

Keywords, also called reserved words, appear in upper-case letters. Key-
words may be typed using the full word or the approved abbreviation. (A full list
of abbreviations is given in Appendix I). The keyword or abbreviation must be
entered correctly or an error will result. The BASIC and DOS error messages are
defined in Appendices A and B, respectively.

Arguments, also called parameters, appear in lower-case letters. Arguments comple-
ment keywords by providing specific information to the command or statement.
For example, the keyword LOAD tells the computer to load a program while the
argument ‘‘program name’’ tells the computer which specific program to load. A
second argument specifies from which drive to load the program. Arguments
include filenames, variables, line numbers, etc.

Square Brackets [] show optional arguments. The user selects any or none of the
arguments listed, depending on requirements.

Angle Brackets <> indicate the user MUST choose one of the arguments listed.

A Vertical Bar | separates items in a list of arguments when the choices are limited to
those arguments listed. When the vertical bar appears in a list enclosed in
SQUARE BRACKETS, the choices are limited to the items in the list, but the
user still has the option not to use any arguments. If a vertical bar appears within
angle brackets, the user MUST choose one of the listed arguments.

Ellipsis . . . (a sequence of three dots) means an option or argument can be repeated more
than once.

Quotation Marks “” enclose character strings, filenames and other expressions.
When arguments are enclosed in quotation marks, the quotation marks must be
included in the command or statement. In this encyclopedia, quotation marks are
not conventions used to describe formats; they are required parts of a command or
statement.

Parentheses () When arguments are enclosed in parentheses, they must be included in
the command or statement. Parentheses are not conventions used to describe
formats; they are required parts of a command or statement.

BASIC BUILDING BLOCKS AND BASIC 7.0 ENCYCLOPEDIA

27

Variable refers to any valid BASIC variable names, such as X, AS, T%, etc.
Expression refers to any valid BASIC expressions, such as A+B+2,.5%X +3),
etc.

NOTE: For all DOS commands, variables and expressions used as
arguments must be endorsed in parentheses.

BASIC COMMANDS AND
STATEMENTS

APPEND

Append data to the end of a sequential file
APPEND #logical file number,‘‘filename’’[,Ddrive number][<ON|,>Udevice]

EXAMPLES:

Append # 8, “MYFILE” OPEN logical file 8 called ‘““MYFILE”", and prepare
to append with subsequent PRINT # statements.

Append #7,(A%),D0,U9 OPEN logical file named by the variable in AS$ on
drive 0, device number 9, and prepare to APPEND.

AUTO

Enable/disable automatic line numbering

AUTO [line#]

EXAMPLES:

AUTO 10 Automatically numbers program lines in incréments of 10.
AUTO 50 Automatically numbers lines in increments of 50.
AUTO Turns off automatic line numbering.

BACKUP

Copy the entire contents from one disk to another on a dual disk drive

BACKUP source Ddrive number TO destination Ddrive number [<ON\,>
Udevice]

NOTE: This command can be used only with a dual-disk drive.

EXAMPLES:

BACKUP DO TO DI Copies all files from the disk in drive O to the disk

in drive 1, in dual disk drive unit 8.

BACKUP DO TO DI ON U9 Copies all files from drive 0 to drive 1, in disk

BANK

drive unit 9.

Select one of the 16 BASIC banks (default memory configurations), numbered 0-15 to
be used during PEEK, POKE, SYS, and WAIT commands.

BANK bank number

Here is a table of available BANK configurations in the Commodore 128 memory:

BANK

O 1 U = D

b=

10
11
12
13
14
15

CONFIGURATION

RAM(0) only

RAM(1) only

RAM(2) only (same as 0)

RAM(3) only (same as 1)

Internal ROM , RAM(0), I/O

Internal ROM , RAM(1), I/O

Internal ROM , RAM(2), I/O (same as 4)
Internal ROM , RAM(3), I/O (same as 5)
External ROM , RAM(0), I/O

External ROM , RAM(1), I/O

External ROM , RAM(2), I/O (same as 8)
External ROM , RAM(3), I/O (same as 9)
Kernal and Internal ROM (LOW), RAM(0), I/O
Kernal and External ROM (LOW), RAM(), I/O
Kernal and BASIC ROM, RAM(0), Character ROM
Kernal and BASIC ROM, RAM(0), 1/0

Banks are described in detail in Chapter 8, The Power Behind Commodore 128
Graphics and Chapter 13, The Commodore 128 Operating System.

BEGIN /

BEND

A conditional statement like IF . . . THEN: ELSE, structured so that you can include

several program lines between the start (BEGIN) and end (BEND) of the structure.
Here’s the format:

BASIC BUILDING BLOCKS AND BASIC 7.0 ENCYCLOPEDIA

29

IF condition THEN BEGIN : statement
statement
statement BEND : ELSE BEGIN
statement
statement BEND

EXAMPLE

10 I[F X = | THEN BEGIN: PRINT **X = 1 is True"”

20 PRINT “‘So this part of the statement is performed’’

30 PRINT *‘When X equals 1’

40 BEND: PRINT “*End of BEGIN/BEND structure’”:GO to 60

50 PRINT “*X does not equal 1":PRINT “‘The statements between BEGIN/
BEND are skipped™’

60 PRINT *‘Rest of Program™’

BLOAD

Load a binary file starting at the specified memory location

BLOAD ““filename’’[,Ddrive number][<ONI!,U>device number] [,Bbank
number] [,Pstart address]

where:
B filename is the name of your file
B bank number selects one of the 16 BASIC banks (default memory con-
figurations)
® start address is the memory location where loading begins
EXAMPLES:

BLOAD “‘SPRITES’’, BO, P3584 LOADS the binary file “*SPRITES”’
starting in Jocation 3584 (in BANK 0).

BLOAD ““DATAY’’, DO, U8, B1, P4096 LOADS the binary file ““DATA 1”’
into location 4096 (BANK 1) from
Drive 0O, unit 8.

BOOT

Load and execute a program which was saved as a binary file

BOOT ‘‘filename’’[,Ddrive number][<ON]|,>Udevice][,Palt LOAD ADD]

EXAMPLE:

BOOT BOOT a bootable disk (CP/M Plus for ex-
ample).

BOOT “*GRAPHICS 1°", DO, U9 LOADS the binary program ‘‘GRAPHICS 1"’

BOX

from unit 9, drive 0, and executes it.

Draw box at specified position on screen

BOX [color source], X1, Y1[,X2,Y2][,angle][,paint]

where:

color source

X1,Y1
X2,Y2

angle

paint

EXAMPLES:

0= Background color

1 = Foreground color (DEFAULT)
2 = Multi-color 1

3 = Multi-color 2

Corner coordinate (scaled)

Corner diagonally opposite X1, Y1, (scaled); default is the PC
location.

Rotation in clockwise degrees; default is O degrees

Paint shape with color
0= Do not paint

1= Paint

(default =0)

BOX 1, + 10, + 10 Draw a box 10 pixels to the right and 10 down from

the current pixel cursor location.

BOX 1, 10, 10, 60, 60 Draws the outline of a rectangle.

BOX, 10, 10, 60, 60, 45, 1 Draws a painted, rotated box (a diamond).

BOX , 30, 90, , 45, 1 Draws a filled, rotated polygon.

Any parameter can be omitted but you must include a comma in its place, as in the last

two examples.

NOTE: Wrapping occurs if the degree is greater than 360.

BASIC BUILDING BLOCKS AND BASIC 7.0 ENCYCLOPEDIA

31

BSAVE

Save a binary file from the specified memory locations

BSAVE ‘‘filename’’[,Ddrive number][<ONI,U>device number] [,Bbank
number],Pstart address TO Pend address

where:

® start address is the starting address where the program is SAVEd from
B end address is the last address + 1 in memory which is SAVEd

This is similar to the SAVE command in the Machine Language MONITOR.

EXAMPLES:

BSAVE “‘SPRITE DATA’’,B0, Saves the binary file named ‘“SPRITE DATA"’,
P3584 TO P4096 starting at location 3584 through 4095 (BANK
0).
BSAVE ‘‘PROGRAM.SCR"’,D0, Saves the binary file named ‘‘PROGRAM.
U9,B0,P3182 TO P7999 SCR’ in the memory address range 3182
through 7999 (BANK 0) on drive 0, unit 9.

CATALOG

Display the disk directory
CATALOG [Ddrive number][<ON|,>Udevice number][,wildcard string]

EXAMPLE:
CATALOG Displays the disk directory on drive 0.

CHAR

Display characters at the specified position on the screen
CHAR [color source],X,Y[,string][,LRVS]

This is primarily designed to display characters on a bit mapped screen, but it can also
be used on a text screen. Here’s what the parameters mean:

color source 0= Background
1 = Foreground

X Character column (0-39) (VIC screen)
(0-79) (8563) screen

Y Character row (0-24)

string String to print

reverse Reverse field flag (0 =off, 1 =on)
EXAMPLE:
10 COLOR 2,3: REM MULTI-COLOR | = RED
20 COLOR 3,7: REM MULTI-COLOR 2 = BLUE

30 GRAPHIC 3.1
30 CHAR 0.10,10, “TEXT",0

CIRCLE

Draw circles, ellipses, arcs, etc., at specified positions on the screen
CIRCLE {[color source],X,Y[,Xri{,Yr] [,salf,eall,angle][,inc]

where:

i

color source background color
foreground color
multi-color 1

= multi-color 2

il

i

0
|
2
3
X,Y Center coordinate of the CIRCLE
Xr X radius (scaled); (default = Q)
Yr Y radius (sealed default is Xr)

sa Starting arc angle (default O degrees)

ea Ending arc angle (default 360 degrees)

angle Rotation is clockwise degrees (default is O degrees)
in¢ Degrees between segments (default is 2 degrees)
sa
Xy Xr
yr
ea
EXAMPLES:

CIRCLEL, 160,100,65,10 Draws an ellipse.
CIRCLEI, 160,100,65,50 Draws a circle.

BASIC BUILDING BLOCKS AND BASIC 7.0 ENCYCLOPEDIA

33

CIRCLEI, 60,40,20,18,,,.45 Draws an octagon.
CIRCLE!1, 260,40,20,,,,,90 Draws a diamond.
CIRCLEI, 60,140,20,18,,,,120 Draws a triangle.

CIRCLE 1,+2,+2,50,50 Draws a circle (two pixels down and two to the
right) relative to the original coordinates of the
pixel cursor.

CIRCLE]I, 30;90 Draws a circle 30 pixels and 90 degrees to the
right of the current pixel cursor coordinate
position.

You may omit a parameter, but you must still place a comma in the appropriate
position. Omitted parameters take on the default values.

CLOSE

Close logical file
CLOSE file number

EXAMPLE:
CLOSE 2 Logical file 2 is closed.

CLR

Clear program variables

CLR

CMD

Redirect screen output to a logical disk or print file.

CMD logical file number [,write list]

EXAMPLE:
OPEN 1,4 Opens device 4 (printer).
CMD 1 All normal output now goes to the printer.

LIST The LISTing goes to the printer, not the screen—even the word
READY.

PRINT#1 Sends output back to the screen.
CLOSE 1 Closes the file.

COLLECT

Free inaccessible disk space
COLLECT [Ddrive number][<ON|,>Udevice]

EXAMPLE:

COLLECT DO Free all available space which has been incorrectly allocated to
improperly closed files. Such files are indicated with an asterisk
on the disk directory.

COLLISION

Define handling for sprite collision interrupt

COLLISION type [,statement]
type Type of interrupt, as follows:
1 = Sprite-to-sprite collision
2 = Sprite-to-display data collision
3 = Light pen (VIC screen only)
statement BASIC line number of a subroutine

il

EXAMPLE:

Collision 1, 5000 Enables a sprite-to-sprite collision and program control sent to
subroutine at line 5000.

Collision 1 Stops interrupt action which was initiated in above example.

Collision 2, 1000 Enables a sprite-to-data collision and program control directed
to subroutine in line 1000.

COLOR

Define colors for each screen area

COLOR source number, color number

This statement assigns a color to one of the seven color areas:

AREA SOURCE

40-column (VIC) background

40-column (VIC) foreground

multicolor 1

multicolor 2

40-column (VIC) border

character color (40- or 80-column screen)
80-column background color

SN B RN =D

BASIC BUILDING BLOCKS AND BASIC 7.0 ENCYCLOPEDIA

35

Colors that are usable are in the range 1-16.

COLOR CODE COLOR COLOR CODE COLOR

1 Black 9
2 White 10
3 Red 11
4 Cyan 12
5 Purple 13
6 Green 14
7 Blue 15
8 Yellow 16

Orange
Brown

Light Red
Dark Gray
Medium Gray
Light Green
Light Blue
Light Gray

Color Numbers in 40-Column Output

Black

White

Dark Red
Light Cyan
Light Purple
Dark Green
Dark Blue
Light Yellow

[~ B B W7 I SRR S

9
10
11
12
13
14
15
16

Dark Purple
Dark Yellow
Light Red
Dark Cyan
Medium Gray
Light Green
Light Blue
Light Gray

Color Numbers in 80-Column Output

EXAMPLES:

COLOR 0, 1: Changes background color of 40-column screen to black.

COLOR 5, 8: Changes character color to yellow.

CONCAT

Concatenate two data files

CONCAT ¢‘file 2”’ [,Ddrive number] TO “‘file 1”’
[,Ddrive number][<ON|,>Udevice]

EXAMPLE:
Concat ‘‘File B’ to ‘‘File A”’

Concat (A$) to (BS), D1, U9

FILE B is attached to FILE A, and the combined
file is designated FILE A.

The file named by B$ becomes a new file with

the

same name with the file named by A$ at-

tached to the end of B$. This is performed on
Unit 9, drive 1 (a dual disk drive).

Whenever a variable is used as a filename, as in the last example, the filename variable

must be within parentheses.

CONT

Continue program execution

CONT

COPY

Copy a file from one drive to another within a dual disk drive. Copy one file to

another with a different name within a single drive

COPY [Ddrive number,]‘‘source filename’’TO[Ddrive number,]‘‘destination

filename’’[<ON|,>Udevice]

NOTE: Copying between two single or double disk drive units cannot be
done. This command does not support unit-to-unit copying.

EXAMPLES:
COPY DO, “TEST” TO D1, “TEST PROG”

COPY DO, “*STUFF”’ TO D1, “*STUFF”’

COPY DO TO DI

COPY *"WORK.PROG’’ TO *“BACKUP”’

DATA

Define data to be used by a program

DATA list of constants

EXAMPLE:

Copies ‘‘test’” from drive O to drive
1, renaming it *‘test prog’’ on drive 1.

Copies “*STUFF’’ from drive 0 to
drive 1.

Copies all files from drive 0 to drive
1.

Copies ““WORK.PROG™’ as a file
called ““BACKUP’’ on the same disk
(drive 0).

DATA 100, 200, FRED, “*“HELLO, MOM™’,, 3, 14, ABC123

BASIC BUILDING BLOCKS AND BASIC 7.0 ENCYCLOPEDIA

37

DCLEAR

Clear all open channels on disk drive

DCLEAR [Ddrive number][<ON|,>Udevice]

EXAMPLES:
DCLEAR DO Clears all open files on drive 0, device number 8.
DCLEAR D1,U9 Clears all open files (channels) on drive 1, device number 9.

DCLOSE

Close disk file
DCLOSE [#logical file number][<ON|,>Udevice]

EXAMPLES:
DCLOSE Closes all channels currently open on unit 8.

DCLOSE #2 Closes the channel associated with the logical file number 2 on
unit 8.

DCLOSE ON U9 Closes all channels currently open on unit 9.

DEF FN

Define a user function

DEF FN name (variable) = expression

EXAMPLE:

10 DEF FNA(X) = 12%(34.75-X/.3) + X
20 PRINT FNA(7)

The number 7 is inserted each place X is located in the formula given in the DEF
statement. In the example above, the answer returned is 144,

NOTE: If you plan to define a function in a program that will use BASIC
7.0 graphics commands, invoke the GRAPHIC command before defining
your function. The portion of memory where functions are defined and
where the graphics screen is located is shared. Once you allocate your
graphics area, the function definitions are safely placed somewhere else
in memory. If you don’t take this precaution and you invoke the GRAPHIC
command after you define a function, the function definition (between
$1CO00 and $4000) is destroyed.

DELETE

Delete lines of a BASIC program in the specified range
DELETE [first line] [-last line]

EXAMPLES:
DELETE 75 Deletes line 75.
DELETE 10-50 Deletes lines 10 through 50, inclusive. ..

DELETE-50 Deletes all lines from the beginning of the program up to and
including line 50.

DELETE 75- Deletes all lines from 75 to the end of the program, inclusive.

DIM

Declare number of elements in an array

DIM variable (subscripts) [,variable(subscripts)] . . .

EXAMPLE:
10 DIM A$(40),B7(15),CC%(4.4.4)

Dimension three arrays where arrays A$, B7 and CC% have 41 elements, 16 elements
and 125 elements respectively.

DIRECTORY

Display the contents of the disk directory on the screen

DIRECTORY [Ddrive number][<ON1,>Udevice][,wildcard]

EXAMPLES:
DIRECTORY Lists all files on the disk in unit 8.

DIRECTORY D1, U9, “WORK”’ Lists the file named ‘““WORK,’’ on drive I of
unit 9.

DIRECTORY “‘AB*’" Lists all files starting with the letters “*AB”’
like ABOVE, ABOARD, etc. on unit 8. The
asterisk specifies a wild card, where all files
starting with ‘*AB’’ are displayed.

DIRECTORY DO, *“?2.BAK’’ The ? is a wild card that matches any single
character in that position. For example: FILE
1.BAK, FILE 2.BAK, FILE 3.BAK all match
the string.

BASIC BUILDING BLOCKS AND BASIC 7.0 ENCYCLOPEDIA

39

DIRECTORY DI1,U9,(A%) LISTS the filename stored in the variable A$
on device number 9, drive 1. Remember, when-
ever a variable is used as a filename, put the
variable in parentheses.

NOTE: To print the DIRECTORY of the disk in drive 0, unit 8, use the
following example:

LOAD**$0" .8
OPEN4,4:CMD4:LIST
PRINT#4:CLOSE4

DLOAD

Load a BASIC program from the disk drive, device 8.
DLOAD ““filename’’ [,Ddrive number][<ON|,>Udevice number]

EXAMPLES:

DLOAD “*BANKRECS’" Searches the disk for the program ‘‘BANKRECS”
and LOADS it.

DLOAD (A$) LOADS a program from disk in which the name is
stored in the variable AS. An error message is given if
AS is null. Remember, when a variable is used as a
filename, it must be enclosed in parentheses.

DO / LOOP / WHILE / UNTIL / EXIT

Define and control a program loop

DO [UNTIL condition | WHILE condition]
statements [EXIT]
LOOP [UNTIL condition) WHILE condition]

This loop structure performs the statements between the DO statement and the LOOP
statement. If no UNTIL or WHILE modifies either the DO or the LOOP statement,
execution of the statements in between continues indefinitely. If an EXIT statement is
encountered in the body of a DO loop, execution is transferred to the first statement
following the LOOP statement. DO loops may be nested, following the rules defined by
the FOR-NEXT structure. If the UNTIL parameter is specified, the program continues
looping until the condition is satisfied (becomes true). The WHILE parameter is the
opposite of the UNTIL parameter: the program continues looping as long as the
condition is TRUE. As soon as the condition is no longer true, program control resumes
with the statement immediately following the LOOP statement. An example of a
condition (boolean argument) is A = 1, or G>65.

EXAMPLES:

10X = 25

20 DO UNTIL X = 0
30X = X-1

40 PRINT X =""X

50 LOOP

60 PRINT “*End of Loop”’

This example performs the statements X = X-1
and PRINT “X ="":Xuntil X =0. When X = 0the
program resumes with the PRINT *‘End of Loop™
statement immediately following LOOP.

10 DO WHILE A$<> CHRS (13):GETKEY AS$:PRINT A$:LOOP
20 PRINT “‘“THE RETURN KEY HAS BEEN PRESSED”’

10 DOPEN #8, **SEQFILE”’
20 DO

30 GET #8,AS%

40 PRINT AS;

50 LOOP UNTIL ST

60 DCLOSE #8

DOPEN

This DO loop waits for a key to be pressed,
receives input from the keyboard one character at
a time and prints the letter of the key which is
pressed. If the RETURN key is pressed, control is
transferred out of the loop and line 20 is executed.

This program opens file “*SEQFILE™ and gets
data until the ST system variable indicates all data
is input.

Open a disk file for a read and/or write operation

DOPEN # logical file number,*‘filename[,<type>]*’[,Lrecord length]
[,Ddrive number][<ON|,>Udevice number][,W]

where type is:

S-mcmwm

EXAMPLES:
DOPEN#1, “*ADDRESS”’,W Create the sequential file number | (ADDRESS)

I

i

i

Il

Sequential File Type

Program File Type

User File Type

Relative File Type

Record Length = the length of records in a relative file only
Write Operation (if not specified a read operation occurs)

for a write operation

DOPEN#2 “*RECIPES’’,D1,U9 Open the sequential file number 2 (RECIPES)

for a read operation on device number 9, drive |

BASIC BUILDING BLOCKS AND BASIC 7.0 ENCYCLOPEDIA

41

DRAW

Draw dots, lines and shapes at specified positions on the screen
DRAW [color source] {,X1, Y1}{TO X2, Y2]...
where:
Color source 0=Bit map background
I = Bit map foreground
2 = Multi-color 1
3 = Maulti-color 2
X1,Y1 Starting coordinate (0,0 through 319,199)
X2,Y2 Ending coordinate (0,0 through 319,199)
EXAMPLES:
DRAW 1, 100, 50 Draw a dot.
DRAW | 10,10 TO 100,60 Draw a line.
DRAW | 10,10 TO 10,60 TO 100,60 TO 10,10 Draw a triangle.

DRAW 1, 120;45 Draw a dot 45° relative and 120 pixels
away from the current pixel cursor
position.

DRAW Draw a dot at the present pixel cursor
position. Use LOCATE to position the
pixel cursor.

You may omit a parameter but you still must include the comma that would have
followed the unspecified parameter. Omitted parameters take on the default values.

DSAVE

Save a BASIC program file to disk
DSAVE “‘filename’’ [,Ddrive number][<ON|,>Udevice number]

EXAMPLES:
DSAVE ““BANKRECS” Saves the program ‘‘BANKRECS’’ to disk.
DSAVE (A%) Saves the disk program named in the variable A$.

DSAVE ““PROG 3,D1,U9 Saves the program ““PROG3"’ to disk on unit num-
. ber9, drive 1.

DVERIFY

Verify the program in memory against the one on disk
DVERIFY ‘‘filename’’[,Ddrive number][<ON|,>Udevice number]
To verify Binary data, see VERIFY *‘filename’’,8,1 format, under VERIFY command
description.
EXAMPLES:
DVERIFY “*C128 Verifies program *‘C128"" on drive 0, unit 8.

DVERIFY “‘SPRITES’’,D0,U9 Verifies program ‘‘SPRITES’’ on drive 0, de-
vice 9.

END

Define the end of program execution

END

ENVELOPE

Define a musical instrument envelope
ENVELOPE nl[,atk] [,dec] [,sus] [,rell[,wf] [,pw]
where:

n Envelope number (0-9)
atk Attack rate (0-15)
dec Decay rate (0-15)
sus Sustain (0-15)
rel Release rate (0-15)
wf Waveform: 0 = triangle

1 = sawtooth
2 = variable pulse (square)
3 = noise

4 = ring modulation
pw Pulse width (0-4095)

See the *“T"" option in the PLAY command to select an envelope in a PLAY string.

EXAMPLE:

ENVELOPE 1, 10, 5, 10, 0, 2, 2048 This command sets envelope 1 to Attack
= 10, Decay = 3, Sustain = 10, Release
= 0, waveform = variable pulse (2), and
the pulse width = 2048

BASIC BUILDING BLOCKS AND BASIC 7.0 ENCYCLOPEDIA

43

FAST

Sets the 8502 microprocessor at a speed of 2MHz.
FAST

This command initiates 2MHz mode, causing the VIC 40-column screen to be turned off.
All operations are speeded up considerably. Graphics may be used, but will not be visible
until a. SLOW command is issued. The Commodore 128 powers up in IMHz mode. The
DMA operations (FETCH, SWAP, STASH) must be performed at 1MHz (slow) speed.

FETCH

Get data from expansion (RAM module) memory
FETCH #bytes, intsa, expsa, expb

where bytes = Number of bytes to get from expansion memory (0-65535) where 0 =
64K (65535 bytes)
intsa = Starting address of host RAM (0-65535)
expb = 64K expansion RAM bank number (0-7) where expb = 0-1 for 128K
and expb = 0-7 for up to 512K.
expsa = Starting address of expansion RAM (0-65535)
The hostt BANK for the ROM and 1/O configuration is selected with the BANK
command. The DMA(VIC) RAM bank is selected by bits 6 and 7 of the RAM
configuration register within the MMU($D506).

FILTER

Define sound (SID chip) filter parameters
FILTER [freq][,lp] [,bp] [,;hp] [,res]

i

where:

freq Filter cut-off frequency (0-2047)
Ip Low-pass filter on (1), off (0)
bp Band-pass filter on (1), off (0)
hp High-pass filter on (1), off (0)
res Resonance (0-15)

Unspecified parameters result in no change to the current value.

EXAMPLES:

FILTER 1024,0,1;(}?;2 Set the cutoff frequency at 1024, select the band pass
L filter and a resonance level of 2.

FILTER 2000,1,0,1 ,10 Set the cutoff frequency at 2000, select both the low
pass and high pass filters (to form a notch reject) and set
the resonance level at 10.

FOR / TO / STEP / NEXT

Define a repetitive program loop structure.
FOR variable = start value TO end value [STEP increment] NEXT variable

The logic of the FOR/NEXT statement is as follows. First, the loop variable is set to the
start value. When the program reaches a program line containing the NEXT statement, it
adds the STEP increment (default = 1) to the value of the loop variable and checks to
see if it is higher than the end value of the loop. If the loop variable is less than or equal
to the end value, the loop is executed again, starting with the statement immediately
following the FOR statement. If the loop variable is greater than the end value, the loop
terminates and the program resumes immediately following the NEXT statement. The
opposite is true if the step size is negative. See also the NEXT statement.

EXAMPLE:

I0FOR L. = 1 TO 10

20 PRINT L

30 NEXT L

40 PRINT “I'M DONE! L = 'L

This program prints the numbers from one to 10 followed by the message I'M DONE!
L = II.

EXAMPLE:

10 FOR L = 1 TO 100

20 FOR A = 5TO 11 STEP .5
30 NEXT A

40 NEXT L

The FOR . . . NEXT loop in lines 20 and 30 are nested inside the one in line 10 and 40.
Using a STEP increment of .5 is used to illustrate the fact that floating point indices are

valid. The inner rested loop must lie completely within the outer rested loop (lines 10
and 40).

GET

Receive input data from the keyboard, one character at a time, without waiting for a key
to be pressed.

GET variable list

EXAMPLE:

10 DO:GETAS$:LLOOP UNTIL A$="A"" . This ling waits for the A key to be
pressed to continue.

BASIC BUILDING BLOCKS AND BASIC 7.0 ENCYCLOPEDIA

45

20 GET B, C, D GET numeric variables B,C and D from the keyboard without
waiting for a key to be pressed.

GETKEY

Receive input data from the keyboard, one character at a time and wait for a key to be
pressed.

GETKEY variable list

EXAMPLE:
10 GETKEY A$

This line waits for a key to be pressed. Typing any key continues the program.
10 GETKEY AS$,BS$.CS

This line waits for three alphanumeric characters to be entered from the keyboard.

GET#

Receive input data from a tape, disk or RS§232

GET# logical file number, variable list

EXAMPLE:

10 GET#1,A$ This example receives one character, which is stored in the
variable AS, from logical file number 1. This example assumes
that file 1 was previously opened. See the OPEN statement.

GOé4

Switch to C64 mode
GO64

To return to C128 mode, press the reset button, or turn off the computer power and
turn it on again.

GOSUB

Call a subroutine from the specified line number

GOSUB line number

EXAMPLE:

20 GOSUB 800 This example calls the subroutine beginning at line 800 and executes
it. All subroutines must terminate with a RETURN statement.

800 PRINT **'THE C128 WAS WORTH THE WAIT!’: RETURN

GOTO / GO TO

Transfer program execution to the specified line number
GOTO line number

EXAMPLES:
10 PRINT**COMMODORE’’ The GOTO in line 20 makes line 10 repeat continu-
20 GOTO 10 ously until RUN/STOP is pressed.
GOTO 100 Starts (RUNs) the program starting at line 100,
without clearing the variable storage area.
GRAPHIC

Select a graphic mode

1) GRAPHIC mode [,clear][,s]
2) GRAPHIC CLR

This statement puts the Commodore 128 in one of the six graphic modes:

MODE DESCRIPTION

0 40-column text (default)

standard bit-map graphics

standard bit-map graphics (split screen)
multi-color bit-map graphics

multi-color bit-map graphics (split screen)
80-column text

! oa W -

EXAMPLES:
GRAPHIC 1,1 Select standard bit map mode and clear the bit map.

GRAPHIC 4,0,10 Select split screen multi-color bit map mode, do not clear the
bit map and start the split screen at line 10.

GRAPHIC 0 Select 40-column text.
GRAPHIC 5 Select 80-column text.
GRAPHIC CLR Clear and deallocate the bit map screen.

GSHAPE
See SSHAPE.

BASIC BUILDING BLOCKS AND BASIC 7.0 ENCYCLOPEDIA

47

HEADER

Format a diskette

HEADER ‘‘diskname’’ [,} i.d.] [,Ddrive number]
[<ONJ,>Udevice number]

Before a new disk can be used for the first time, it must be formatted with the HEADER
command. The HEADER command can also be used to erase a previously formatted
disk, which can then be reused.

When you enter a HEADER command in direct mode, the prompt ARE YOU
SURE? appears. In program mode, the prompt does not appear.

The HEADER command is analogous to the BASIC 2.0 command:

OPEN 1,8,15,*N0:diskname,i.d.”

EXAMPLES:

HEADER ““MYDISK"*,123, DO This headers ““MYDISK’’ using i.d. 23
on drive 0, (default) device number 8.

HEADER ““RECS’’, 145, D1 ON U9 This headers ‘*“RECS’’ using i.d. 45, on
drive 1, device number 9.

HEADER “*C128 PROGRAMS"’, DO This is a quick header on drive 0, device
number 8, assuming the disk in the drive
was already formatted. The old i.d. is
used.

HEADER (A$),176,D0,U9 This example headers the diskette with
the name specified by the variable AS$,
and the i.d. 76 on drive 0, device num-
ber 9.

HELP

Highlight the line where the error occurred
HELP

The HELP command is used after an error has been reported in a program. When HELP
is typed in 40-column format, the line where the error occurs is listed, with the portion
containing the error displayed in reverse field. In 80-column format, the portion of the
line where the error occurs is underlined.

IF / THEN / ELSE

Evaluate a conditional expression and execute portions of a program depending on the
outcome of the expression

IF expression THEN statements [:ELSE else-clause]

THE IF . .. THEN statement evaluates a BASIC expression and takes one of two
possible courses of action depending upon the outcome of the expression. If the
expression is true, the statement(s) following THEN is executed. This can be any
BASIC statement or a line number. If the expression is false, the program resumes with
the program line immediately following the program line containing the IF statement,

unless an ELSE clause is present. The entire IF . . . THEN statement must be contained
within 160 characters. Also see BEGIN/BEND.
The ELSE clause, if present, must be on the same line as the IF . . . THEN

portion of the statement, and separated from the THEN clause by a colon. When an
ELSE clause is present, it is executed only when the expression is false. The expression
being evaluated may be a variable or formula, in which case it is considered true if
nonzero, and false if zero. In most cases, there is an expression involving relational
operators (=, <,>, <= >=_ <<>)

EXAMPLE:
50 IF X > 0 THEN PRINT ““OK’’: ELSE END

This line checks the value of X. If X is greater than O, the statement immediately
following the keyword THEN (PRINT “‘OK’’) is executed and the ELSE clause is
ignored. If X is less than or equal to 0, the ELSE clause is executed and the statement
immediately following THEN is ignored.

10 IF X = 10 THEN 100 This example evaluates the value of X.

20 PRINT “*X DOES NOT EQUAL 10’ IF X equals 10, the program control is

: transferred to line 100 and the message

99 STOP “X EQUALS 10 is printed. IF X

100 PRINT **X EQUALS 10” does not equal 10, the program resu-
mes with line 20, the C128 prints the
prompt ‘X DOES NOT EQUAL 10"
and the program stops.

INPUT

Receive a data string or a number from the keyboard and wait for the user to press
RETURN

INPUT [‘“‘prompt string’’;] variable list
EXAMPLE:

10 INPUT **PLEASE TYPE A NUMBER"*;A
20 INPUT “*AND YOUR NAME’";A$
30 PRINT A$ ** YOU TYPED THE NUMBER"";A

BASIC BUILDING BLOCKS AND BASIC 7.0 ENCYCLOPED!IA

49

INPUT #

Input data from an I/O channel into a string or numeric variable

INPUT# file number, variable list

EXAMPLE:
10 OPEN 2,8,2
20 INPUT#2, AS, C, DS

This statement INPUTSs the data stored in variables A$, C and D$ from the disk file
number 2, which was OPENed in line 10.

KEY

Define or list function key assignments
KEY [key number, string]

The maximum length for all the definitions together is 241 characters. (p. 3-41)

EXAMPLE:

KEY 7, ““GRAPHICO*’ + CHRS$(I13) + “LIST + CHRS$(13)
This tells the computer to select the (VIC) text screen and list the program whenever the
F7 key is pressed (in direct mode). CHR$(13) is the ASCII character for RETURN and
performs the same action as pressing the RETURN key. Use CHRS$(27) for ESCape.

Use CHR$(34) to incorporate the double quote character into a KEY string. The keys
may be redefined in a program. For example:

10 KEY 2,“PRINT DS$" + CHRS$(I3)

This tells the computer to check and display the disk drive error channel variables
(PRINT DS$) each time the F2 function key is pressed.

I0 FORI=1 to 7 STEP 2
20 KEY I, CHR$(I + 132):NEXT
30 FOR I=2 to 8 STEP 2
40 KEY I, CHR$(I + 132):NEXT

This defines the function keys as they are defined on the Commodore 64.

LET

Assigns a value to a variable
[LET] variable = expression

EXAMPLE:
IOLET A =5 Assign the value 5 to numeric variable A.

20 B
30C

i

6 Assign the value 6 to numeric variable B.

Il

A *B 4+ 3 Assign the numeric variable C, the value resulting from 5
times 6 plus 3.

40D$ = “HELLO' Assign the string ‘““HELLO’ to string variable DS$.

LIST
List the BASIC program currently in memory
LIST [first line] [- last line]

In C128 mode, LIST can be used within a program without terminating program execution.

EXAMPLES:
LIST Shows entire program.
LIST 100- Shows from line 100 until the end of the program.
LIST 10 Shows only line 10.
LIST —100 Shows all lines from the beginning through line 100.
LIST10-200 Shows lines from 10 to 200, inclusive.

LOAD

Load a program from a peripheral device such as the disk drive or Datassette
LOAD ‘“filename’’ [,device number] [,relocate flag]

This is the command used to recall a program stored on disk or cassette tape. Here, the
filename is a program name up to 16 characters long, in quotes. The name must be
followed by a comma (outside the quotes) and a number which acts as a device number
to determine where the program is stored (disk or tape). If no number is supplied, the
Commodore 128 assumes device number 1 (the Datassette tape recorder).

EXAMPLES:
LOAD Reads in the next program from tape.

LOAD “HELLO” Searches tape for a program called HELLO, and
LOAD:s it if found.

LOAD (A%$),8 LOADs the program from disk whose name is
stored in the variable AS$.

LOAD*“HELLO’’,8 Looks for the program called HELLO on disk drive
number 8, drive 0. (This is equivalent to DLOAD
“HELLO™).

LOAD* ‘MACHLANG”,8,1 LOADs the machine language program called
““MACHLANG”’ into the location from which it
was SAVEd.

BASIC BUILDING BLOCKS AND BASIC 7.0 ENCYCLOPEDIA St

LOCATE

Position the bit map pixel cursor on the screen
LOCATE X,Y

The LOCATE statement places the pixel cursor (PC) at any specified pixel coordinate on
the screen.

The pixel cursor (PC) is the coordinate on the bit map screen where drawing of
circles, boxes, lines and points and where PAINTing begins.

EXAMPLE:

LOCATE 160,100 Positions the PC in the center of the bit map screen. Noth-
ing will be seen until something is drawn.

LOCATE +20,100 Move the pixel cursor 20 pixels to the right of the last PC
position and place it at Y coordinate 100.

LOCATE -30,4+20 Move the PC 30 pixels to the right and 20 down from the

previous PC position.

The PC can be found by using the RDOT(0) function to get the X-coordinate and
RDOT(D) to get the Y-coordinate. The color source of the pixel at the PC can be found
by PRINTing RDOT(2).

MONITOR

Enter the Commodore 128 machine language monitor
MONITOR

See Chapter 6 for details on the Commodore 128 Machine Language Monitor.

MOVSPR
Position or move sprite on the screen
1) MOVSPR number,X,Y Place the specified sprite at absolute
sprite coordinate X,Y.
2) MOVSPR number, +/-X, +/-Y Move sprite relative to the position
of the sprite’s current position.
3) MOVSPR number,X;Y Move sprite distance X at angle Y

relative to the sprite’s current position.

4) MOVSPR number, angle # speed Move sprite at an angle relative to
its current coordinate, in the clock-
wise direction and at the specified
speed.

where:

number is sprite’s number (1 through 8)
X,Y is coordinate of the sprite location.

angle is the angle (0-360) of motion in the clockwise direction relative to the
sprite’s original coordinate.

speed is a speed (0-15) in which the sprite moves.

This statement moves a sprite to a specific location on the screen according to
the SPRITE coordinate plane (not the bit map plane) or initiates sprite motion at a
specified rate. See MOVSPR in Chapter 9 for a diagram of the sprite coordinate
system.

EXAMPLES:

MOVSPR 1,150,150 Position sprite | near the center of the screen, X,y
coordinate 150,150.

MOVSPR 1, +20,~30 Move sprite 1 to the right 20 coordinates and up 30
coordinates.

MOVSPR 4, -50, + 100 Move sprite 4 to the left 50 coordinates and down 100
coordinates.

MOVSPR 5, 45 #15 Move sprite 5 at a 45 degree angle in the clockwise
direction, relative to its original x and y coordinates.
The sprite moves at the fastest rate (15).

NOTE: Once you specify an angle and a speed as in the fourth example
of the MOVSPR statement, the sprite continues on its path (even if the
sprite display is disabled) after the program stops, until you set the speed
to 0 or press RUN/STOP and RESTORE. Also, keep in mind that the
SCALE command affects the MOVSPR coordinates. If you add SCALing
to your programs, you also must adjust the sprites” new coordinates so
they appear correctly on the screen.

NEW

Clear (erase) BASIC program and variable storage

NEW

BASIC BUILDING BLOCKS AND BASIC 7.0 ENCYCLOPEDIA

53

ON

Conditionally branch to a specified program line number according to the results of the
specified expression

ON expression <GOTO/GOSUB>> line #1 [, line #2, . . .]

EXAMPLE:

10 INPUT X:IF X<<0 THEN 10

20 ON X GOTO 30, 40, 50, 60 When X = 1, ON sends control to the first line
25 STOP number in the list (30). When X = 2, ON sends
30 PRINT “X 1” control to the second line (40), etc.

40 PRINT “X = 2’

50 PRINT “X = 3~

60 PRINT “X = 4%

I

OPEN

Open files for input or output

OPEN logical file number, device number [,secondary address] [<,‘‘filename
[,filetype[, [mode’’]]|<,cemd string>>]

EXAMPLES:

10 OPEN 3,3 OPEN the screen as file number
3.

20 OPEN 1,0 OPEN the keyboard as file num-
ber 1.

30 OPEN 1,1,0,°DOT”’ OPEN the cassette for reading, as
file number 1, using “‘DOT’ as
the filename.

OPEN 4 4 OPEN the printer as file number 4.

OPEN 15,8,15 OPEN the command channel on
the disk as file 15, with secondary
address 15. Secondary address 15
is reserved for the disk drive error
channel.

5 OPEN 8,8,12,“TESTFILE,S, W’ OPEN a sequential disk file for

writing called TESTFILE as file
number 8, with secondary address
12.

See also: CLOSE, CMD, GET#, INPUT#, and PRINT# statements and system
variables ST, DS, and DSS.

PAINT

Fill area with color

PAINT ([color source],X,Y[,mode]

where:

color source

X,Y

mode

Il

bit map foreground

bit map background (default)
multi-color 1

multi-color 2

I

i

0
1
2
3
starting coordinate, scaled (default at pixel cursor (PC))

0 = paint an area defined by the color source selected
1 = paint an area defined by any nonbackground source

The PAINT command fills an area with color. It fills in the area around the specified
point until a boundary of the same specified color source is encountered. For example, if
you draw a circle in the foreground color source, start PAINTing the circle where the
coordinate assumes the background source. The Commodore 128 will only PAINT
where the specified source in the PAINT statement is different from the source of.the x
and y pixel coordinate. It cannot PAINT points where the sources are the same in the
PAINT statement and the specified coordinate. The X and Y coordinate must lie
completely within the boundary of the shape you intend to PAINT, and the source of the
starting pixel coordinate and the specified color source must be different.

EXAMPLE:

10 CIRCLE 1, 160,100,65,50 Draws an outline of a circle.

20 PAINT 1, 160,100 Fills in the circle with color from source 1 (VIC

foreground), assuming point 160,100 is colored in
the background color (source 0).

10 BOX 1, 10, 10, 20, 20 Draws an outline of a box.

20 PAINT 1, 15, 15 Fills the box with color from source 1, assuming

point 15,15 is colored in the background source

0).

30 PAINT 1, + 10, + 10 PAINT the screen in the foreground color source

at the coordinate relative to the pixel cursor’s
previous position plus 10 in both the vertical and
horizontal positions.

BASIC BUILDING BLOCKS AND BASIC 7.0 ENCYCLOPEDIA

55

100 PAINT 1, 100;90 Paint the screen area 90° relative to and 100
pixels away from the current pixel cursor co-
ordinate.

PLAY

Defines and plays musical notes and elements within a string or string variable.
PLAY ‘‘Vn,On,Tn,Un,Xn,elements, notes’’

where the string or string variable is composed of the following

Vn = Voice (n = [-3)

On = Octave (n = 0-6)
Tn = Tune Envelope Defaults (n = 0-9)
0 = piano
I = accordion
2 = calliope
3 = drum
4 = flute
5 = puitar
6 = harpsichord
7 = organ
8 = trumpet
9 = xylophone

Un = Volume (n = 0-8)
Xn = Filter on (n = 1), off(n = 0)

notes: A,B,C,D,E,F,G

elements: # oo Sharp
$... Flat
W.. ... Whole note
H. Half note
Q Quarter note
Eighth note
S Sixteenth note

.............. Dotted

R............ .. Rest
M ... Wait for all voices currently playing to end

the current ‘‘measure’’

The PLAY statement gives you the power to select voice, octave and tune envelope
(including ten predefined musical instrument envelopes), the volume, the filter, and the
notes you want to PLAY. All these controls are enclosed in quotes. You may include
spaces in a PLAY string for readability.

All elements except R and M precede the musical notes in a PLAY string.

EXAMPLES:
PLAY ““VIO4TOUSXOCDEFGAB™

PLAY “*V305T6U7X1#BSAW.CHDQEIF”’

AS = “*V305T6U3ABCDE’": PLAY A$

PLAY “VICV2EV3G”

POKE

Change the contents of a RAM memory location

POKE address, value

EXAMPLE:

Play the notes C,D,E,F,G,A and B
in voice 1, octave 4, tune envelope
0 (piano), at volume 5, with the
filter off.

Play the notes B-sharp, A-flat, a
whole dotted-C note, a half D-note,
a quarter E-note and an eighth
F-note.

PLAY the notes and elements within
AS.

Plays a chord in the default setting.

10 POKE 53280,1 Changes VIC border color

PRINT

Output to the text screen

PRINT [print list]

The word PRINT can be followed by any of the following:

Characters inside quotes (““text™)

Variable names (A, B, A%, X$)
Functions (SIN(23), ABS(33))
Expressions 2+2),A+3,A=B)

Punctuation marks ()

EXAMPLES:

10 PRINT ‘“*HELLO™

20 A$ ="THERE":PRINT ““HELLO’";A$
30A = 4B =27A + B

40 J = 41:PRINT J;:PRINT J - 1

50 PRINT A;B;:D = A + B:PRINT D;A-B

See also POS, SPC, TAB and CHAR functions.

RESULTS

HELLO
HELLO THERE
6

41 40

4 2 6 2

BASIC BUILDING BLOCKS AND BASIC 7.0 ENCYCLOPEDIA

57

PRINT#

Output data to files
PRINT# file number[, print list]
PRINT# is followed by a number which refers to the data file previously OPENed.

EXAMPLE:
10 OPEN 4.4 Outputs the data “"HELLO THERE”
20 PRINT#4,"*HELLO THERE!’,A$,B$ and the variables A$ and BS to the
printer.
10 OPEN 2.,8,2 Outputs the data variables A, BS, C
20 PRINT#2,A,B$,C.D and D to the disk file number 2.

NOTE: The PRINT# command is used by itself to close the channel to
the printer before closing the file, as follows:

10 OPEN 4,4
30 PRINT#4, ““PRINT WORDS”’
40 PRINT#4
50 CLOSE 4

PRINT USING

Output using format
PRINT [#file number,] USING‘‘format list’’; print list
This statement defines the format of string and numeric items for printing to the text
screen, printer or other device.
EXAMPLE:

SX = 32:Y = 100.23: A§ = “CAT”
10 PRINT USING “‘$## ### :13.25,X,Y
20 PRINT USING “###>#";""CBM”’ A

When this is RUN, line 10 prints:

$13.25 $32.00 $*#+++ Five asterisks (*****) are printed instead of a Y
value because Y has five digits, and this condition
does not conform to format list (as explained below).

Line 20 prints this:

CBM CAT Leaves two spaces before printing ““CBM’ as de-
fined in format list.

The pound sign (#) reserves room for a single character in the output field. If the data
item contains more characters than there are # signs in the format field, the entire field
is filled with asterisks (*): no characters are printed.

EXAMPLE:
10 PRINT USING ““#### ;X

For these values of X, this format displays:
= 12.34 12

= 567.89 568
A = 123456 s e

> >

For a STRING item, the string data is truncated at the bounds of the field. Only as many
characters are printed as there are pound signs (#) in the format item. Truncation occurs
on the right.

EXAMPLES:
FIELD EXPRESSION RESULT COMMENT
#HH -1 0.1 Leading zero added.
#HH 1 1.0 Trailing zero added.
#H#H## ~100.5 -101 Rounded to no decimal places.
HHHH -1000 orkk Overflow because four digits and a minus sign
cannot fit in field.
#H##. 10 10. Decimal point added.
#S## 1 $1 Floating dollar sign.
PUDEF

Redefine symbols in PRINT USING statement
PUDEF ‘‘nnnn”’

Where *‘nnnn’’ is any combination of characters, up to four in all. PUDEF allows you to
redefine any of the following four symbols in the PRINT USING statement: blanks, commas,
decimal points and dollar signs. These four symbols can be changed into some other char-
acter by placing the new character in the correct position in the PUDEF control string.

Position [is the filler character. The default is a blank. Place a new character here
for another character to appear in place of blanks.

Position 2 is the comma character. Default is a comma.

Position 3 is the decimal point. Default is a decimal point.

Position 4 is the dollar sign. Default is a dollar sign.

BASIC BUILDING BLOCKS AND BASIC 7.0 ENCYCLOPEDIA 59

VVVVVVVVVV EXAMPLES:
10 PUDEF*‘*” PRINT * in the place of blanks.
20 PUDEF** < PRINT < in the place of commas.
READ

Read data from DATA statements and input it into a numeric or string variable)
READ variable list

This statement inputs information from DATA statements and stores it in variables,
where the data can be used by the RUNning program.

In a program, you can READ the data and then re-read it by issuing the
RESTORE statement. The RESTORE sets the sequential data pointer back to the
beginning, where the data can be read again. See the RESTORE and DATA statements.

EXAMPLES:
10 READ A, B, C READ the first three numeric variables from
20 DATA 3,4, 5 the closest data statement.
10 READ AS, BS$, C$ READ the first three string variables from
20 DATA JOHN, PAUL, GEORGE the nearest data statement.
10 READ A, BS, C READ (and input into the C128 memory) a
20 DATA 1200, NANCY, 345 numeric variable, a string variable and an-

other numeric variable.
RECORD

Position relative file pointers
RECORD# logical file number, record number [,byte number]

This statement positions a relative file pointer to select any byte (character) of any
record in the relative file.

When the record number value is set higher than the last record number in the file,
the following occurs:

For a write (PRINT#) operation, additional records are created to expand the file
to the desired record number.

For a read (INPUT#) operation, a null record is returned and a ‘*RECORD NOT
PRESENT ERROR occurs™. See your disk drive manual for details about relative
files.

EXAMPLES:

10 DOPEN#2,*‘FILE”
20 RECORD#2,10,1
30 PRINT#2,AS

40 DCLOSE#2

This example opens an existing relative file called *“‘FILE as file number 2 in
line 10. Line 20 positions the relative file pointer at the first byte in record number 10.
Line 30 actually writes the data, AS, to file number 2.

REM

Comments or remarks about the operation of a program line

REM message

EXAMPLE:
10 NEXT X:REM THIS LINE INCREMENTS X.

RENAME

Change the name of a file on disk

RENAME “‘old filename’’ TO “‘new filename’’ [,Ddrive number][<ONI|,>
Udevice number]

EXAMPLES:

RENAME ““TEST”’ TO “‘FINALTEST”’,DO Change the name of the file
“TEST’’ to ““FINAL TEST"".

RENAME (A$) TO (B$),D0,U9 Change the filename specified in
A$ to the filename specified in B$
on drive 0, device number 9. Re-
member, whenever a variable name
is used as a filename, it must be
enclosed in parentheses.

RENUMBER

Renumber lines of a BASIC program

RENUMBER [new starting line number][,increment][,old starting line
number]

EXAMPLES:

RENUMBER Renumbers the program starting at 10, and increments
each additional line by 10.

RENUMBER 20, 20, 1 Starting at line 1, renumbers the program. Line 1 be-
comes line 20, and other lines are numbered in incre-
ments of 20.

BASIC BUILDING BLOCKS AND BASIC 7.0 ENCYCLOPEDIA

61

RENUMBER,, 65 Starting at line 65, renumbers in increments of 10. Line
65 becomes line 10. If you omit a parameter, you must
still enter a comma in its place.

RESTORE

Reset READ pointer so the DATA can be reREAD
RESTORE [line#]

If a line number follows the RESTORE statement, the READ pointer is set to the first
data item in the specified program line. Otherwise the pointer is reset to the beginning of
the first DATA statement in the BASIC program.

EXAMPLES:
IOFORI = 1TO3 This example READs the data in line 70 and stores it in
20 READ X numeric variable X. It adds the total of all the numeric
30 ALL = X + ALL data items. Once all the data has been READ, three
40 NEXT cycles through the loop, the READ pointer is RE-
50 RESTORE STOREA to the beginning of the program and it returns
60 GOTO 10 to line 10 and performs repetitively.
70 DATA 10,20,30
10 READ A,B.C Line 50 of this example RESTORES the DATA pointer
20 DATA 100,500,750 to the beginning data item in line 40. When line 60 is
30 READ X,Y,Z executed, it will READ the DATA 36,24,38 from line
40 DATA 36,24,38 40, and store it in numeric variables S, P, and Q,
50 RESTORE 40 respectively.

60 READ S,P,Q

RESUME

Define where the program will continue (RESUME) after an error has been trapped
RESUME [line number | NEXT]

This statement is used to restart program execution after TRAPping an error. With no
parameters, RESUME attempts to re-execute the statement in which the error occurred.
RESUME NEXT resumes execution at the statement immediately following the one indi-
cating the error. RESUME followed by a line number will GOTO the specific line and
resume execution from that line number. RESUME can only be used in program mode.

EXAMPLE:

10 TRAP 100

15 INPUT ** ENTER A NUMBER"";A
20 B = 100/A

40 PRINT**THE RESULT ="";B

50 INPUT DO YOU WANT TO RUN IT AGAIN (Y/N)";Z$:IF Z$ = “°'Y”
THEN 10.

60 STOP

100 INPUT*‘ENTER ANOTHER NUMBER (NOT ZERO)";A

110 RESUME 20

This example traps a *‘DIVISION BY ZERO ERROR’’ in line 20 if O is entered in line
15. If zero is entered, the program goes to line 100, where you are asked to input another
number besides 0. Line 110 returns to line 20 to complete the calculation. Line 50 asks
if you want to repeat the program again. If you do, press the Y key.

RETURN

Return from subroutine

RETURN

EXAMPLE:

10 PRINT “*ENTER MAIN PROGRAM™’
20 GOSUB 100
30 PRINT *‘END OF PROGRAM™’

90 STOP
100 PRINT **SUBROUTINE [
110 RETURN

This example calls the subroutine at line 100 which prints the message **SUBROU-
TINE 1" and RETURN:S to line 30, the rest of the program.

RUN

Execute BASIC program
1) RUN [line number]
2) RUN ““filename’’ [,Ddrive number][<ON|,>Udevice number]

EXAMPLES:
RUN Starts execution from the beginning of the program.
RUN 100 Starts program execution at line 100.

RUN‘““PRGI” DLOADs “‘PRG1” from disk drive 8, and runs it from the
starting line number.

RUN(AS) DLOADs the program named in the variable AS$.

BASIC BUILDING BLOCKS AND BASIC 7.0 ENCYCLOPEDIA

63

SAVE

Store the program in memory to disk or tape

SAVE [“‘filename’’][,device number][,EOT flag]

EXAMPLES:
SAVE Stores program on tape, without a name.
SAVE ““HELLO’" Stores a program on tape, under the name HELLO.
SAVE A$.8 Stores on disk, with the name stored in variable A$.

SAVE “HELLO’’,8 Stores on disk, with name HELLO (equivalent to
DSAVE ““HELLO”).

SAVE ““HELLO’’, 1, 2 Stores on tape, with name HELLO, and places an END
OF TAPE marker after the program.

SCALE
Alter scaling in graphics mode
SCALE n [,Xmax,Ymax]
where:
n = 1 (on) or 0 (off)
Coordinates may be scaled from 0 to 32767 (default = 1023) in both X and Y (in either

standard or multicolor bit map mode), rather than the normal scale values, which are:

0to 159 Y = 0to 199
0to319 Y = 0to 199

il
I

multi-color mode X
bit map mode X

Il

EXAMPLES:

10 GRAPHIC 1,1 Enter standard bit map, turn scaling
20 SCALE [:CIRCLE 1,180,100,100,100 on to default size (1023, 1023) and
draw a circle.

10 GRAPHIC 1.3 Enter multi-color mode. turn scaling
20 SCALE 1,1000,5000 on to size (1000, 5000) and draw a
30 CIRCLE 1,180,100,100,100 circle.

The SCALE command affects the sprite coordinates in the MOVSPR command. If
you add scaling to a program that contains sprites, adjust the MOVSPR coordinates
accordingly.

SCNCLR

Clear screen
SCNCLR mode number

The modes are as follows:

MODE NUMBER MODE

0 40 column (VIC) text

1 bit map

2 split screen bit map

3 multi-color bit map

4 split screen multi-color bit map
5 80 column (8563) text

This statement with no argument clears the graphic screen, if it is present, otherwise the
current text screen is cleared.

EXAMPLES:

SCNCLR 5 Clears 80 column text screen.
SCNCLR 1 Clears the (VIC) bit map screen.
SCNCLR 4 Clears the (VIC) multicolor bit map and 40-column text split screen.

SCRATCH

Delete file from the disk directory
SCRATCH “‘filename”’ [,Ddrive number][<ON|,>Udevice number]

EXAMPLE:
SCRATCH **MY BACK™’, DO

This erases the file MY BACK from the disk in drive 0.
SLEEP
Delay program for a specific period of time

SLEEP N
where N is seconds 0< N < = 65535.

BASIC BUILDING BLOCKS AND BASIC 7.0 ENCYCLOPEDIA

65

SLOW

Return the Commodore 128 to 1MHz operation

SLOW

SOUND

Output sound effects and musical notes

SOUND v.f.d[,dir][,m][,s),wIl,p]

where: v =

,..,
Il

EXAMPLES:

voice (1..3)
frequency value (0..65535)

= duration (0..32767)

step direction (O(up), 1(down) or 2(oscillate)) default = 0

= minimum frequency (if sweep is used) (0..63535) default = 0

step value for sweep (0..32767) default = 0

waveform (0 = triangle, | = sawtooth, 2 = variable, 3 = noise)
default = 2

pulse width (0..4095) default = 2048

SOUND 1,40960,60 Play a SOUND at frequency 40960 in voice |

for 1 second.

SOUND 2,20000,50,0,2000,100 Output a sound by sweeping through frequen-

cies starting at 2000 and incrementing upward
in units of 100 up to 20,000. Each frequency is
played for 50 jiffies.

SOUND 3,5000,90,2,3000,500,1 This example outputs a range of sounds start-

SPRCOLOR

ing at a minimum frequency of 3000, through
5000, in increments of 500. The direction of
the sweep is back and forth (oscillating). The
selected waveform is sawtooth and the voice
selected is 3.

Set multi-color 1 and/or multi-color 2 colors for all sprites

SPRCOLOR [smcr-1][,smcr-2]

where:

smcer-1 Sets multi-color 1 for all sprites.
smer-2 Sets multi-color 2 for all sprites.

Either of these parameters may be any color from 1 through 16.

EXAMPLES:
SPRCOLOR 3,7 Sets sprite multi-color 1 to red and multi-color 2 to blue.
SPRCOLOR 1,2 Sets sprite multi-color | to black and multi-color 2 to white.

SPRDEF

Enter the SPRite DEFinition mode to create and édit sprite images.
SPRDEF

The SPRDEF command defines sprites interactively

Entering the SPRDEF command displays a sprite work area on the screen which
is 24 characters wide by 21 characters tall. Each character position in the grid corre-
sponds to a sprite pixel in the sprite displayed to the right of the work area. Here
is a summary of the SPRite DEFinition mode operations and the keys that perform
them:

USER INPUT DESCRIPTION

1-8 Selects a sprite number at the SPRITE NUMBER? prompt only.

A Turns on and off automatic cursor movement,

CRSR keys Moves cursor in work/area.

RETURN KEY Moves cursor to start of next line.

RETURN key Exits sprite designer mode at the SPRITE NUMBER? prompt
only.

HOME key Moves cursor to top left corner of sprite work area.

CLR key Erases entire grid.

1-4 Selects color source (enables/disables pixels).

CTRL key, 1-8 Selects sprite foreground color (1-8).

Commodore key, 1-8 Selects sprite foreground color (9-16).

STOP key Cancels changes and returns to prompt.

SHIFT RETURN Saves sprite and returns to SPRITE NUMBER? prompt.

X Expands sprite in X (horizontal) direction.

Y Expands sprite in Y (vertical) direction.

M Multi-color sprite mode.

C Copies sprite data from one sprite to another.

SPRITE

Turn on and off, color, expand and set screen priorities for a sprite

SPRITE <number> [,on/off][,fgnd][,priority][,x-exp] [,y-exp][,mode]

The SPRITE statement controls most of the characteristics of a sprite.

BASIC BUILDING BLOCKS AND BASIC 7.0 ENCYCLOPEDIA

67

PARAMETER DESCRIPTION

number Sprite number (1-8)

on/off Turn sprite on (1) or off (0)

foreground Sprite foreground color (1-16) (default = sprite number)

priority Priority is 0 if sprites appear in front of objects on the screen. Priority
is 1 if sprites appear in back of objects on the screen.

X-exp Horizontal EXPansion on (1) or off (0)

y-exp Vertical EXPansion on (1) or off (0)

mode Select standard sprite (0) or multi-color sprite (1)

Unspecified parameters in subsequent sprite statements take on the characteristics of the
previous SPRITE statement. You may check the characteristics of a SPRITE with the
RSPRITE function.

EXAMPLES:
SPRITE 1,1,3 Turn on sprite number 1 and color it red.

SPRITE 2,1,7,1,1,1 Turn on sprite number 2, color it blue, make it pass
behind objects on the screen and expand it in the vertical
and horizontal directions.

SPRITE 6,1,1,0,0,1,1 Turn on SPRITE number 6, color it black. The first O
tells the computer to display the sprites in front of objects
on the screen. The second O and the 1 following tell the
C128 to expand the sprite vertically only. The last 1
specifies multi-color mode. Use the SPRCOLOR com-
mand to select the sprite’s multi-colors.

SPRSAY

Copy sprite data from a text string variable into a sprite or vice versa, or copy data from
one sprite to another.

SPRSAYV <origin>,<destination>

Either the origin or the destination can be a sprite number or a string variable but they
both cannot be string variables. They can both be sprite numbers. If you are storing a
string into a sprite, only the first 63 bytes of data are used. The rest are ignored since a
sprite can only hold 63 data bytes.

EXAMPLES:
SPRSAV 1,A$ Transfers the image (data) from sprite | to the string named AS.
SPRSAV BS$,2 Transfers the data from string variable BS into sprite 2.
SPRSAV 2.3 Transfers the data from sprite 2 to sprite 3.

SSHAPE / GSHAPE

Save/retrieve shapes to/from string variables

SSHAPE and GSHAPE are used to save and load rectangular areas of bit map
screens to/from BASIC string variables. The command to save an area of the bit map
screen into a string variable is:

SSHAPE string variable, X1, Y1 [,X2,Y2]
where:

string variable String name to save data in
X1,Y1 Corner coordinate (0,0 through 319,199) (scaled)
X2,Y2 Corner coordinate opposite (X1,Y1) (default is the PC)

The command to retrieve (load) the data from a string variable and display it on
specified screen coordinates is:

GSHAPE string variable [X,Y][,mode]

where:

string Contains shape to be drawn
X,Y Top left coordinate (0.0 through 319,199) telling where to draw the shape
(scaled—the default is the pixel cursor)
mode Replacement mode:
= place shape as is (default)
= invert shape
OR shape with area
AND shape with area
XOR shape with area

AW —O
il

Il

The replacement mode allows you to change the data in the string variable so you can
invert it, perform a logical OR, exclusive OR (turn off bytes that are on) or AND
operation on the image.

EXAMPLES:

SSHAPE A$,10,10 Saves a rectangular area from the coordinates 10,10
to the location of the pixel cursor, into string vari-
able AS.

SSHAPE B$,20,30,43,50 Saves a rectangular area from top left coordinate
(20,30) through bottom right coordinate (43,50) into
string variable BS.

SSHAPE D$, + 10, + 10 Saves a rectangular area 10 pixels to the right and
10 pixels down from the current position of the pixel
cursor.

BASIC BUILDING BLOCKS AND BASIC 7.0 ENCYCLOPEDIA 69

GSHAPE AS$,120,20 Retrieves shape contained in string variable A$ and
displays it at top left coordinate (120,20).

GSHAPE B$,30,30,1 Retrieves shape contained in string variable B$ and
displays it at top left coordinate 30,30. The shape is
inverted due to the replacement mode being selected
by the 1.

GSHAPE C$, + 20, + 30 Retrieves shape from string variable C$ and displays
it 20 pixels to the right and 30 pixels down from the
current position of the pixel cursor.

NOTE: Beware using modes 1-4 with multi-color shapes. You may
obtain unpredictable results.

STASH
Move contents of host memory to expansion RAM
STASH #bytes, intsa, expsa, expb

Refer to FETCH command for description of parameters.

STOP

Halt program execution

STOP

SWAP

Swap contents of host RAM with contents of expansion RAM
SWAP #bytes, intsa, expsa, expb

Refer to FETCH command for description of parameters.

SYS

Call and execute a machine language subroutine at the specified address
SYS address [,a]l,x][,yI[,s]

This statement calls a subroutine at a given address in a memory configuration previously
set up according to the BANK command. Optionally, arguments a,x,y and s are loaded into
the accumulator, x, y and status registers, respectively, before the subroutine is called.

The address range is 0 to 65535. The 8502 microprocessor begins executing the
machine-language program starting at the specified memory location. Also see the ¢
BANK command.

EXAMPLES:

SYS 32768 Calls and executes the machine-language routine at location 32768
($8000).

SYS 6144,0 Calls and executes the machine-language routine at location 6144
($1800) and loads zero into the accumulator.

TEMPO
Detine the speed of the song being played
TEMPO n

where n is a relative duration between (1 and 255)
The default value is 8, and note duration increases with n.

EXAMPLES:
TEMPO 16 Defines the Tempo at 16.
TEMPO 1| Defines the TEMPO at the slowest speed.
TEMPO 250 Defines the TEMPO at 250.

TRAP

Detect and correct program errors while a BASIC program is RUNning
TRAP [line number]

The RESUME statement can be used to resume program execution. TRAP with no line
number turns off error trapping. An error in a TRAP routine cannot be trapped. Also see
system variables ST, EL, DS and DS$.

EXAMPLES:
.100 TRAP 1000 If an error occurs, GOTO line 1000.

.1000?ERR$ (ER):EL Print the error message, and the error number.
.1010 RESUME Resume with program execution.

TROFF

Turn off error tracing mode

TROFF

BASIC BUILDING BLOCKS AND BASIC 7.0 ENCYCLOPEDIA

71

TRON

Turn on error tracing
TRON

TRON is used in program debugging. This statement begins trace mode. When you
RUN the program, the line numbers of the program appear in brackets before any action
for that line occurs.

VERIFY

Verify program in memory against one saved to disk or tape
VERIFY “‘filename’’ [,device number][,relocate flag]
Issue the VERIFY command immediately after you SAVE a program.

EXAMPLES:
VERIFY Checks the next program on the tape.
VERIFY "“HELLO’ Searches for HELLO on tape, checks it against memory.

VERIFY ““HELLO",8,1 Searches for HELLO on disk, then checks it against
memory.

VOL

Define output level of sound for SOUND and PLAY statements
VOL volume level

EXAMPLES:
VOL 0 Sets volume to its lowest level.
VOL 15 Sets volume for SOUND and PLAY statements to its highest output.

WAIT

Pause program execution until a data condition is satisfied
WAIT <location>, <mask-1> [,mask-2>>]
where:

location 0-65535
masks = 0-255

The WAIT statement causes program execution to be suspended until a given memory
address recognizes a specified bit pattern or value.

The first example below WAITs until a key is pressed on the tape unit to
continue with the program. The second example will WAIT until a sprite collides with
the screen background.

EXAMPLES:

WAIT 1, 32, 32
WAIT 53273, 2
WAIT 36868, 144, 16

WIDTH

Set the width of drawn lines

WIDTH n

EXAMPLES:

WIDTH I Set single width for graphic commands
WIDTH 2 Set double width for drawn lines

WINDOW

Define a screen window
WINDOW top left col,top left row,bot right col,bot right row[,clear]

This command defines a logical window within the 40 or 80 column text screen. The -
coordinates must be in the range 0-39/79 for 40- and 80-column values respectively and

0-24 for row values. The clear flag, if provided (1), causes a screen-clear to be

performed (but only within the limits of the newly described window).

EXAMPLES:

WINDOW 5,5,35,20 Defines a window with top left corner coordinate as
5,5 and bottom right corner coordinate as 35,20.

WINDOW 10,2,33,24,1 Defines a window with upper left corner coordinate
10,2 and lower right corner coordinate 33,24. Also .
clears the portion of the screen within the window as
specified by the 1.

BASIC FUNCTIONS

The format of the function description is:

FUNCTION (argument)

where the argument can be a numeric value, variable or string.

Each function description is followed by an EXAMPLE. The first line appearing
below the word ““EXAMPLE"’ is the function you type. The second line without bold is
the computer’s response.

BASIC BUILDING BLOCKS AND BASIC 7.0 ENCYCLOPEDIA

73

ABS

Return absolute value of argument X

ABS (X)

EXAMPLE:
PRINT ABS (7%(-5))
35

ASC

Return CBM ASCII code for the first character in X$
ASC(X$)
This function returns the CBM ASCII code of the first character of X8§.

EXAMPLE:
X$ = “*C128":PRINT ASC (X$)
67

ATN

Return the arctangent of X in radians
ATN (X)

The value returned is in the range — 7/2 through m/2.

EXAMPLE:
PRINT ATN (3)
1.24904577

BUMP

Return sprite collision information
BUMP (N)

To determine which sprites have collided since the last check, use the BUMP function.
BUMP(1) records which sprites have collided with each other, and BUMP(2) records
which sprites have collided with other objects on the screen. COLLISION need not be
active to use BUMP. The bit positions (0-7) in the BUMP value correspond to sprites 1
through 8 respectively. BUMP(n) is reset to zero after each call.

Here’s how the sprite numbers and BUMP values that are returned correspond:

BUMP Value: 128}64[32[16]8}41211
Sprite Number: s| 7] 6] 5]4l302]1
EXAMPLES:

PRINT BUMP (1) 12 indicates that sprites 3 and 4 have collided.
PRINT BUMP (2) 32 indicates the sprite 6 has collided with an object on the screen.

CHR$

Return character for specified CBM ASCII code X
CHRS$(X)

The argument (X) must be in the range 0-255. This is the opposite of ASC and returns the
string character whose CBM ASCII code is X. Refer to Appendix E for a table of CHRS codes.

EXAMPLES:

PRINT CHRS (65) Prints the A character.
A
PRINT CHRS (147) Clears the text screen.

COS

Return cosine for angle of X in radians
COS(X)

EXAMPLE:

PRINT COS (7/3)
5

FNxx

Return value from user defined function xx
FNxx(X)

This function returns the value from the user defined function xx created in a DEF
FNxx statement

EXAMPLE:

10 DEF FNAA(X) = (X-32)*5/9
20 INPUT X

30 PRINT FNAA(X)

RUN

240 (7 is input prompt)
4.44444445

BASIC BUILDING BLOCKS AND BASIC 7.0 ENCYCLOPEDIA

75

NOTE: If GRAPHIC is used in a program that defines a function, issue
the GRAPHIC command before defining the function or the function
definition is destroyed.

FRE

Return number of available bytes in memory
FRE (X)
where X is the RAM bank number. X = 0 for BASIC program storage and X = 1 to
check for available BASIC variable storage.
EXAMPLES:

PRINT FRE (0) Returns the number of free bytes for BASIC programs.
58109

PRINT FRE (1) Returns the number of free bytes for BASIC variable storage.
64256

HEXS$

Return hexadecimal string equivalent to decimal number X
HEX$(X)

EXAMPLE:

PRINT HEX$(53280)
D020

INSTR

Return starting position of string 2 within string 1

INSTR (string 1, string 2 [,starting position])

EXAMPLE:

PRINT INSTR (**COMMODORE 128°",**128"")
11

INT

Return integer form (truncated) of a floating point value
INT(X)

This function returns the integer value of the expression. If the expression is positive,
the fractional part is left out. If the expression is negative, any fraction causes the next
lower integer to be returned.

EXAMPLES:

PRINT INT(3.14)
3

PRINT INT(-3.14)
4

JoY

Return position of joystick and the status of the fire button
JOY(N)

when N equals:

1 JOY returns position of joystick 1.
2 JOY returns postion of joystick 2.

Any value of 128 or more means that the fire button is also pressed. To find the joystick
position if the fire button is pressed subtract 128 from the JOY value. The direction is
indicated as follows.

1
8 2
7 0 3
6 4
5
EXAMPLES:
PRINT JOY (2) Joystick 2 fires to the left.
135
[F (JOY (1) > 127) THEN PRINT ““FIRE”’ Determines whether the fire button
is pressed.
DIR = JOY(1) AND 15 Returns direction (only) of joystick 1.
LEFT$

Return the leftmost characters of string

LEFTS$ (string,integer)

EXAMPLE:

PRINT LEFT$(**COMMODORE"’,5)
COMMO

BASIC BUILDING BLOCKS AND BASIC 7.0 ENCYCLOPEDIA

77

LEN

Return the length of a string
LEN (string)

The returned integer value is in the range 0-255.

EXAMPLE:

PRINT LEN (*“COMMODORE128"")
12

LOG

Return natural log of X

LOG(X)
The argument X must be greater than 0.
EXAMPLE:

PRINT LOG (37/5)
2.00148

MID$

Return a substring from a larger string
MIDS$ (string,starting position[,length])
This function extracts the number of characters specified by length (0-255), from string,
starting with the character specified by starting position (1-255).
EXAMPLE:

PRINT MIDS$(**COMMODORE 128°°,3,5)
MMODO

PEEK

Return contents of a specified memory location
PEEK(X)

The data will be returned from the bank selected by the most recent BANK command.
See the BANK command.

EXAMPLE:

10 BANK 15:VIC = DEC(**D000™")
20FOR1 = 1TO 47

30 PRINT PEEK(VIC + 1)

40 NEXT

This example displays the contents of the registers of the VIC chip (some of which
are ever-changing).

PEN

Return X and Y coordinates of the light pen
PEN(n)

where n = 0 PEN returns the X coordinate of light pen position on any VIC screen.

n = 1 PEN returns the Y coordinate of light pen position on any VIC screen.
n = 2 PEN returns the character column position of the 80 column display.
n = 3 PEN returns the character row position of the 80 column display.
n = 4 PEN returns the (80-column) light pen trigger value.

It

The VIC PEN values are not sealed and are taken from the same coordinate plane as

sprites use. Unlike the 40 column (VIC) screen, the 80 column (8563) coordinates are

character row and column positions and not pixel coordinates like the VIC screen. Both

the 40 and 80 column screen coordinate values are approximate and vary, due to the

nature of light pens. The 80-column read values are not valid until PEN(4) is true.
Light pens are always plugged in to control port 1.

EXAMPLES:

10 PRINT PEN(0);PEN(1) Displays the X and Y coordinates of the light
pen (for the 40 column screen).

10 DO UNTIL PEN(4):LOOP Ensures that the read values are valid (for the
80 column screen).

20 X = PEN(2)
30 Y = PEN(3)
40 REM:REST OF PROGRAM
n
Return the value of pi (3.14159265)
T
EXAMPLE:
PRINT 4 This returns the result 3.14159265.
POINTER

Return the address of a variable

POINTER (variable name)
This function returns a zero if the variable is not defined.
EXAMPLE:

A = POINTER (Z) This example returns the address of variable Z.
NOTE: Address returned is in RAM BANK 1.

BASIC BUILDING BLOCKS AND BASIC 7.0 ENCYCLOPEDIA

79

POS

Return the current cursor column position within the current screen window

POS(X)

The POS function indicates where the cursor is within the defined screen window. X is a
dummy argument, which must be specified, but the value is ignored. The values
returned range from 0-39 on the VIC screen and 0-79 on the 80-column screen.

EXAMPLE:
FOR I = 1to 10 : 7SPC(D); POS(0): NEXT

This displays the current cursor position within the defined text window.

POT

Returns the value of the game-paddle potentiometer
POT (n)

when:
n = 1, POT returns the position of paddle #1 (control port 1)
n = 2, POT returns the position of paddle #2 (control port 1)
n = 3, POT returns the position of paddle #3 (control port 2)
n = 4, POT returns the position of paddle #4 (control port 2)

The values for POT range from 0 to 255. Any value of 256 or more means that the fire
button is also depressed.

EXAMPLE:

10 PRINT POT(1)
20 IF POT(1) > 256 THEN PRINT “‘FIRE”

This example displays the value of game paddle 1.

RCLR
Return color of color source
RCLR(N)

This function returns the color (1 through 16) assigned to the color source N (0< = N = <
6), where the following N values apply:

SOURCE DESCRIPTION

40-column background

bit map foreground

multi-color 1

multi-color 2

40-column border

40- or 80-column character color
80-column background color

AU R W=D

The counterpart to the RCLR function is the COLOR command.

EXAMPLE:

IOFORI = 0TO 6
20 PRINT **SOURCE’":I;**IS COLOR CODE"";RCLR(I)
30 NEXT

This example prints the color codes for all six color sources.

RDOT

Return current position or color source of pixel cursor

RDOT (N)

where:

N = 0 returns the X coordinate of the pixel cursor
N = 1 returns the Y coordinate of the pixel cursor
N 2 returns the color source (0-3) of the pixel cursor

I

This function returns the location of the current position of the pixel cursor or the
current color source of the pixel cursor.

EXAMPLES:

PRINT RDOT(0) Returns X position of pixel cursor
PRINT RDOT(1) Returns Y position of pixel cursor
PRINT RDOT(2) Returns color source of pixel cursor

RGR

Return current graphic mode
RGR(X)
This function returns the current graphic mode. X is a dummy argument, which must be

specified. The counterpart of the RGR function is the GRAPHIC command. The value
returned by RGR(X) pertains to the following modes:

BASIC BUILDING BLOCKS AND BASIC 7.0 ENCYCLOPEDIA

8i

VALUE

[0 I R O

GRAPHIC MODE

40 column (VIC) text

Standard bit map

Split screen bit map
Multi-color bit map

Split screen Multi-color bit map
80 column (8563) text

EXAMPLE:

1

PRINT RGR(0) Displays the current graphic mode; in this case, standard bit

map mode.

PRINT RGR(0) Both muiti-color bit map and 80-column text modes are enabled.

8

RIGHT$

Return sub-string from rightmost end of string

RIGHT$(string, numeric)

EXAMPLE:
PRINT RIGHTS(**BASEBALL".5)
EBALL
RND
Return a random number
RND (X)
If X = 0 RND returns a random number based on the hardware clock.
If X >0 RND generates a reproducible random number based on the seed
value beiow.
If X <0 produces a random number which is used as a base called a seed.
EXAMPLES:
PRINT RND(0) Displays a random number between O and 1.
507824123

PRINT INT(RND(1)*100 + 1) Displays a random number between | and 100.

89

RSPCOLOR

Return sprite multicolor values
RSPCOLOR (X)
When:

X = 1 RSPCOLOR returns the sprite multi-color 1.
X = 2 RSPCOLOR returns the sprite multi-color 2.

The returned color value is a value between 1 and 16. The counterpart of the RSPCOLOR
function is the SPRCOLOR statement. Also see the SPRCOLOR statement.

il

1l

EXAMPLE:

10 SPRITE 1,1,2,0,1.1,1

20 SPRCOLOR 5.7

30 PRINT “*SPRITE MULTI-COLOR 1 IS";RSPCOLOR(I)
40 PRINT **SPRITE MULTI-COLOR 2 IS"";RSPCOLOR(2)
RUN

SPRITE MULTI-COLOR 1 1S 5

SPRITE MULTI-COLOR 2 IS 7

In this example line 10 turns on sprite |, colors it white, expands it in both the X and Y
directions and displays it in multi-color mode. Line 20 selects sprite multi-colors I and 2
(5 and 7 respectively). Lines 30 and 40 print the RSPCOLOR values for multi-color 1 and 2.

RSPPOS

Return the speed and position values of a sprite
RSPPOS (sprite number,position|speed)

where sprite number identifies which sprite is being checked, and position and speed
specifies X and Y coordinates or the sprite’s speed.
When position equals:

0 RSPPOS returns the current X position of the specified sprite.
1 RSPPOS returns the current Y position of the specified sprite.

When speed equals:

2 RSPPOS returns the speed (0-15) of the specified sprite.

EXAMPLE:

{0 SPRITE 1,1,2
20 MOVSPR 1.45#13
30 PRINT RSPPOS (1.,0);RSPPOS (1,1);RSPPOS (1,2)

This example returns the current X and Y sprite coordinates and the speed (13).

BASIC BUILDING BLOCKS AND BASIC 7.0 ENCYCLOPEDIA

83

RSPRITE

Return sprite characteristics
RSPRITE (sprite number,characteristic)

RSPRITE returns sprite characteristics that were specified in the SPRITE command.
Sprite number specifies the sprite (1-8) you are checking and the characteristic specifies
the sprite’s display qualities as follows:

RSPRITE RETURNS
CHARACTERISTIC THESE VALUES:

0 Enabled(1) / disabled(0)
1 Sprite color (1-16)
2 Sprites are displayed in front of (0) or behind
(1) objects on the screen
3 Expand in X direction yes = 1, no = 0
4 Expand in Y direction yes = 1,no = 0
5 Multi-color yves = I,no =0
EXAMPLE:
10 FORT = 0 TO 5 This example prints all 6 characteristics of sprite 1.
20 PRINT RSPRITE (1,D)
30 NEXT
RWINDOW

Returns the size of the current window or the number of columns of the current
screen

RWINDOW (n)
When n equals:

¢ RWINDOW returns the number of lines in the current window.

1 RWINDOW returns the number of rows in the current window.

2 RWINDOW returns either of the values 40 or 80, depending on the current
screen output format you are using.

The counterpart of the RWINDOW function is the WINDOW command.

EXAMPLE:

10 WINDOW 1,1,10,10

20 PRINT RWINDOW(0);RWINDOW(1);RWINDOW(2)
RUN

9940

This example returns the lines (10) and columns (10) in the current window. This
example assumes you are displaying the window in 40 column format.

SGN

Return sign of argument X

SGN(X)

EXAMPLE:

PRINT SGN(4.5);SGN(0);SGN(-2.3)
I 0-1

SIN

Return sine of argument

SIN(X)

EXAMPLE:

PRINT SIN (7/3)
866025404

SPC

Skip spaces on printed output
SPC (X)

EXAMPLE:

PRINT “*COMMODORE’";SPC(3);"* 128"

COMMODORE 128

SQR
Return square root of argument

SQR (X)

EXAMPLE:

PRINT SQR(25)
5

STR$

Return string representation of number

STRS (X)

BASIC BUILDING BLOCKS AND BASIC 7.0 ENCYCLOPEDIA

85

EXAMPLE:

PRINT STR$(123.45)
123.45

PRINT STR$(-89.03)
-89.03

PRINT STR$(1E20)
1IE + 20

TAB

Moves cursor to tab position in present statement

TAB (X)

EXAMPLE:

10 PRINT**COMMODORE"TAB(25)*“ 128"
COMMODORE 128

TAN

Return tangent of argument in radians
TAN(X)

This function returns the tangent of X, where X is an angle in radians

EXAMPLE:

PRINT TAN(.785398163)
1

USR

Call user-defined subprogram
USR(X)

When this function is used, the BASIC program jumps to a machine language program
whose starting point is contained in memory locations 4633($1219) and 4634($121A), (or
785($0311) and 786(3$0312) in C64 mode). The parameter X is passed to the machine-
language program in the floating-point accumulator ($63-$68 in C128 mode). A value is
returned to the BASIC program through the calling variable. You must direct the value
into a variable in your program in order to receive the value back from the floating-point
accumulator. An ILLEGAL QUANTITY ERROR results if you don’t specify this
variable. This allows the user to exchange a variable between machine code and
BASIC.

EXAMPLE:

10 POKE 4633,0
20 POKE 4634,48
30 A = USR(X)
40 PRINT A

Place starting location ($3000 = 12288:300 = 0:$30) = 48 of machine language
routine in location 4633 and 4634. Line 30 stores the returning value from the floating-
point accumulator. The USER vector is assumed to be in BANK 15. Your machine
language routine MUST be in RAM bank 0 below address $4000.

VAL

Return the numeric value of a number string

VAL(XS)

EXAMPLE:

10 A$ = 1207

20 BS = 365"

30 PRINT VAL (AS + B$)
RUN

485

XOR

Return exclusive OR value
XOR (nl,n2)

This function returns the exclusive OR of the numeric argument values nl and n2.
X = XOR (nl1,n2)

where nl, n2, are 2 unsigned values (0-65335)

EXAMPLE:

PRINT XOR(128,64)
192

RESERVED SYSTEM WORDS
(KEYWORDS)

This section lists the words used to make up the BASIC 7.0 language. These words
cannot be used within a program as other than a component of the BASIC language. The
only exception is that they may be used within quotes (in a PRINT statement, for example).

BASIC BUILDING BLOCKS AND BASIC 7.0 ENCYCLOPEDIA

87

ABS DELETE
AND DIM
APPEND DIRECTORY
ASC DLOAD
ATN DO
AUTO DOPEN
BACKUP DRAW
BANK DS
BEGIN DS$
BEND DSAVE
BLOAD DVERIFY
BOOT EL

BOX ELSE
BSAVE END
BUMP ENVELOPE
CATALOG ER

CHAR ERR$
CHR$ EXIT
CIRCLE EXP
CLOSE FAST
CLR FETCH
CMD FILTER
COLLECT FN
COLLISION FOR
COLOR FRE
CONCAT GET
CONT GET#
COPY G064

Ccos GOSUB
DATA GOTO
DCLEAR GO TO
DCLOSE GRAPHIC
DEC GSHAPE
DEF FN HEADER

HELP
HEXS$

IF
INPUT
INPUT#
INSTR
INT

JOY
KEY
LEFT$
LEN

LET
LIST
LOAD
LOCATE
LOG
LOOP
MID$
MONITOR
MOVSPR
NEW
NEXT
NOT
(OFF)
ON
OPEN
OR
PAINT
PEEK
PEN
PLAY
POINTER
POKE
POS

POT
PRINT
PRINT#
PUDEF
(QUIT)
RCLR
RDOT
READ
RECORD
REM
RENAME
RENUMBER
RESTORE
RESUME
RETURN
RGR
RIGHT$
RND
RREG
RSPCOLOR
RSPPOS
RSPRITE
RUN
RWINDOW
SAVE
SCALE
SCNCLR
SCRATCH
SGN

SIN
SLEEP
SLOW
SOUND
SPC

SPRCOLOR
SPRDEF
SPRITE
SPRSAYV
SQR
SSHAPE
ST
STASH
STEP
STOP
STR$
SWAP
SYS
TAB
TAN
TEMPO
THEN
TI

TIS$

TO
TRAP
TROFF
TRON
UNTIL
USING
USR
VAL
VERIFY
VOL
WAIT
WHILE
WIDTH
WINDOW
XOR

NOTE: Keywords shown in parentheses are not implemented in C128

BASIC 7.0.

Reserved variable names are names reserved for the variables DS, DS$, ER, EL,
ST, TI and TI$, and the function ERRS$. Keywords such as TO and IF or any other
names that contain keywords, such as RUN, NEW or LOAD cannot be used.

ST is a status variable for input and output (except normal screen/keyboard
operations). The value of ST depends on the results of the last /O operation. In general,
if the value of ST is 0, then the operation was successful.

TI and TI$ are variables that relate to the real time clock built into the Commodore
128. The system clock is updated every 1/60th of a second. It starts at O when the
Commodore 128 is turned on, and is reset only by changing the value of TI$. The
variable TI gives the current value of the clock in 1/60th of a second. TI$ is a string that
reads the value of the real time clock as a 24-hour clock. The first two characters of TI$
contain the hour, the third and fourth characters are minutes and the fifth and sixth
characters are seconds. This variable can be set to any value (so long as all characters
are numbers) and will be updated automatically as a 24-hour clock.

EXAMPLE:
TI$ = “*101530”° Sets the clock to 10:15 and 30 seconds (AM).

The value of the clock is lost when the Commodore 128 is turned off. It starts at
zero when the Commodore 128 is turned on, and is reset to zero when the value of the
clock exceeds 235959 (23 hours, 59 minutes and 59 seconds).

The variable DS reads the disk drive command channel and returns the current
status of the drive. To get this information in words, PRINT DS$. These status variables
are used after a disk operation, like DLOAD or DSAVE, to find out why the error light
on the disk drive is blinking.

ER, EL and the ERRS$ function are variables used in error trapping routines. They
are usually only useful within a program. ER returns the last error number encountered
since the program was RUN. EL is the line where the error occurred. ERRS is a
function that allows the program to print one of the BASIC error messages. PRINT
ERRS(ER) prints out the proper error message.

RESERVED SYSTEM SYMBOLS

The following characters are reserved system symbols.

SYMBOL USE(S)

+ Plus sign Arithmetic addition; string concatenation; relative pixel
cursor/sprite movement; declare decimal number in ma-
chine language monitor

- Minus sign Arithmetic subtraction; negative number; unary minus;
relative pixel cursor/ sprite movement

* Asterisk Arithmetic multiplication

/ Slash Arithmetic division

1 Up arrow Arithmetic exponentiation

Blank space Separate keywords and variable names

= Equal sign Value assignment; relationship testing

< Less than Relationship testing

> Greater than Relationship testing

, Comma Format output in variable lists; command/statement func-

tion parameters

BASIC BUILDING BLOCKS AND BASIC 7.0 ENCYCLOPEDIA

89

@ %

A

SYMBOL

Period

Semicolon

Colon

Quotation mark
Question mark
Left parenthesis
Right parenthesis
Percent

Number
Dollar sign

And sign
Pi

USE(S)

Decimal point in floating-point constants

Format output in variable lists; delimiter

Separate multiple BASIC statements on a program line
Enclose string constants

Abbreviation for the keyword PRINT

Expression evaluation and functions

Expression evaluation and functions

Declare a variable name as integer; declare binary num-
ber in machine language monitor

Precede the logical file number in input/output statements
Declare a variable name as a string and declare hexadeci-
mal number in machine language monitor

Declare octal number in machine language monitor
Declare the numeric censtant 3.141592654

3

ONE STEP
BEYOND
SIMPLE BASIC

This chapter takes you one step beyond simple BASIC and presents a collection of useful
routines. You can incorporate these routines into your own programs as needed. In most
cases the routines will require only line number changes to be fitted into your programs.

CREATING A MENU

A menu is a list of choices you select to perform a specific operation within an
application program. A menu directs the computer to a particular part of a program.
Here is a general example of a menu program:

5 REM MENU SKELETON

10 SCNCLR O

20 PRINT"1. FIRST ITEM"

30 PRINT"2. SECOND ITEM"

40 PRINT"3. THIRD ITEM"

50 PRINT"4. FOURTH ITEM"

100 PRINT:PRINT"SELECT AN ITEM FROM ABOVE"
110 GETKEY AS

120 A=VAL (AS): IF A>4 THEN 10

130 ON A GOSUB 1000,2000,3000,4000

140 GOTO 10:REM RETURN TO MENU

999 sTCP

1000 REM START FIRST ROUTINE FCR ITEM ONE HERE
1999 RETURN

2000 REM START SECCND ROUTINE HERE

2999 RETURN

3000 REM START THIRD ROUTINE HERE

3999 RETURN

4000 REM START FOURTH ROUTINE HERE

4999 RETURN

Program 3-I. Menu Skeleton

The SCNCLR 0 command in line 10 clears the 40-column screen. (Use SCNCLR
5 if you are using the 80-column screen. The easiest selection is by a number. You may
use as many selections as can fit on the screen. Line 100 displays a message to the user.
The GETKEY command in line 110 forces the computer to wait for a key to be pressed.
Since a key represents a character symbol, AS$ is a string variable. So that it can be
interpreted as a numeric value in an ON GOTO statement, the string variable is
converted to a number with the VAL function in line 120. The IF . . . THEN statement
in line 120 screens user errors by preventing the user from selecting a number that is not
in the range of numbers used for choices (4). Line 130 directs control to the appropriate
section (i.e., line number) in your program. Since four selections are offered in this
example, you must include at least four line numbers. Line 1999 returns to the menu at
the end of each subroutine that you add at lines 1000, 2000, 3000 and 4000 in the menu
skeleton.

ONE STEP BEYOND SIMPLE BAS!C

93

BUFFER ROUTINE

The C128 keyboard buffer can hold and dispense up to ten characters from the
keyboard. This is useful in a word processing program where it is possible at certain
moments to type faster than the software can actually process. The characters that
haven’t been displayed yet are temporarily stored in the keyboard buffer. The computer
can hold the next instruction in the buffer for use when the program is ready. This buffer
allows a maximum of ten characters in queue. To see the buffer in action, enter the
command SLEEP 5 and immediately press ten different letter keys. After five seconds,
all ten characters are displayed on the screen.

Here is a buffer routine that allows you to put items in the keyboard buffer
from within a program so they are dispensed automatically as the computer is able to act
upon them.

In line 10, memory location 208 (198 in C64 mode) is filled with a number
between 0 and 10—the number of keyboard characters in the keyboard buffer. In line
20, memory locations 842 through 851 (631-640 in C64 mode) are filled with any ten
characters you want placed there. In this example, seven characters are in the buffer,
each a carriage RETURN character. CHR$(13) is the character string code for the
carriage return character.

Line 40 places the text **?CHRS$(156)"" on the screen, but does not execute the
instruction. Line 50 displays the word ‘“‘LIST" on the screen. Neither command is
executed until the program ends. In the C128, the keyboard buffer automatically empties
when a program ends. In this case, the characters in the buffer (carriage return) are
emptied and act as though you are pressing the RETURN key manually. When this occurs
on a line where the commands from lines 40 and 50 are displayed, they are executed
as though you typed them in direct mode and pressed the RETURN key yourself. When
this program ends, the character color is changed to purple and the program is LISTED
to the screen. This technique is handy in restarting programs (with RUN or GOTO).

The next section gives a practical example of using the buffer routine.

10 POKE 208,7:REM SPECIFY # OF CHARS IN BUFFER

20 FOR I=842 TO 849:POKE I,13:NEXT:REM PLACE CHARS IN BUFFER

30 SLEEP 2 :REM DELAY

40 SCNCLR:PRINT:PRINT:PRINT:PRINT:PRINT:PRINT:PRINT"? CHRS$(156)"

50 PRINT:PRINT:PRINT:PRINT"LIST":REM PLACE LIST ON SCREEN

60 PRINT CHRS${19):PRINT:PRINT:REM GO HOME AND CURSOR DOWN TWICE

70 REM WHEN PROGRAM ENDS, BUFFER EMPTIES AND EXECUTES 7 RETURNS.

80 REM THIS CHANGES CHAR COLOR TQ PURPLE AND LISTS THE PROGRAM AUTOMATICALLY
90 REM AS IF YQU PRESSED THE RETURN KEY MANUALLY

Program 3-2. Buffer Return

LOADING ROUTINE

The buffer can be used in automatic loader routines. Many programs often involve the
loading of several machine code routines as well as a BASIC program. The results of
the following loader are similar to many found on commercial software packages.

2 COLOR 4,1:COLOR 0,1:COLOR 5,1

5 A$="PICTURE"

10 SCNCLR:PRINT:PRINT:PRINT:PRINT"LOAD"CHRS {34)ASCHRS{34)",8,1"
15 PRINT:PRINT:PRINT"NEW"

25 B$S="FILE3.BIN"

30 PRINT:PRINT:PRINT"LOAD"CHRS${34})BSCHRS$(34)",8,1"

45 PRINT:PRINT:PRINT:PRINT:PRINT:PRINT"SYS12*256"

90 PRINT CHRS$(5}:PRINT" GREETINGS FROM COMMODORE"
100 PRINT" PLEASE STAND BY - LOADING":PRINT CHR$(144)
200 PRINT CHRS$(19)

300 POKE208,7:FORI=842T0851:POKEI, 13 :NEXT

Program 3-3. Loading Routine

Line 2 colors the border, screen and characters black. Line 5 assigns A$ the
filename “*‘PICTURE’’, which in this example assumes that it is an 8K binary file of a
bit-mapped screen. Line 10 places the LOAD instruction for the picture file on the
screen, but does not execute it. A carriage return from the keyboard buffer executes the
load instruction once the program ends and the keyboard buffer empties. Line 15 prints
the word ““NEW’’ on the screen. Again, this operation is not carried out until a carriage
return is executed on the same line once the keyboard buffer empties. After loading a
machine language program, a NEW is performed to set pointers to their original
positions and clear the variable storage area. Line 30 displays the second load instruc-
tion for the machine language program ‘‘FILE3.BIN’’. This hypothetical program
enables the bit mapped PICTURE, and anything else you want to supply in the program.
Line 45 initiates (SYS12%256), the ““FILE3.BIN’’ program starting at 3072 ($0C00)
once the keyboard buffer empties. This is only a template sample for you to follow.
“PICTURE’’ and ‘*FILE3.BIN’’ are programs you supply and are only used to illustrate
one technique of automatic loading. Since the previous character color was black, all the
loading instructions are displayed in black on a black background, so they can’t be seen.
The CHR$(5) in line 90 changes the character color to white, so the only visible
messages are the ones in white in lines 90 and 100, while the disk drive is loading
“PICTURE” and “*FILE3.BIN™". Line 300 is the buffer routine.

If you were to do each step manually it would require seven *‘RETURNS’’. This
program places seven carriage return characters in the keyboard buffer, and they are
dispensed automatically when the program ends. As each RETURN is accepted, the
corresponding screen instruction is enacted automatically as if you had pressed the
RETURN key manually.

PROGRAMMING THE
C128 FUNCTION KEYS

As each of the function keys (F1 through F8) is pressed, the computer displays a BASIC
command on the screen and in some cases acts immediately. These are known as the
default values of the function keys. Enter a KEY command to get a list of function key
values at any time.

ONE STEP BEYOND SIMPLE BASIC

95

CHANGING FUNCTION KEYS

You can change the value assigned to any function key by entering the KEY command
followed by the number (1 through 8) of the key you want changed, a comma, and the
new key instruction in a string format. For example:

KEY1, “DLOAD’" + CHR$(34)+ ‘‘PROGRAM NAME"’
+CHR$(34)+ CHR$(13)+ “‘LIST’’ +CHR$(13)

This tells the computer to automatically load the BASIC program called **program
name’’ and list it immediately (whenever F1 is pressed). The character string code value
for the quote character is 34. It is necessary for LOAD and SAVE operations. The
character string code value for RETURN is 13 and provides immediate execution.
Otherwise, the instruction is only displayed on the screen and requires you to supply the
additional response and press the RETURN key.

The following example uses the ASCII value for the ESCape key to assign the F3
key to cause a downward scroll:

KEY 3,CHR$(27)+*W”

NOTE: All eight KEY definitions in total must not exceed 246 characters.

USING C64 FUNCTION KEY VALUES

IN Ci28 MODE

Programs previously written for the C64 which incorporate the function keys may still
be used in C128 mode by first assigning the C64 ASCII values to them with this
instruction:

10J = 132:FORA = I TO2:FORK = ATO8STEP2:J =] + l.KEYK ,CHRS$(J):NEXT:
NEXT

HOW TO CRUNCH BASIC PROGRAMS

Several techniques known collectively as memory crunching allow you to get the most
out of your computer’s memory. These techniques include eliminating spaces, using
multiple instructions, having syntax relief, removing remark statements, using variables,
and in general using BASIC intelligently.

ELIMINATING SPACES

In most BASIC commands, spacing is unnecessary, except inside quotes when you want
the spaces to appear on the screen. Although spaces improve readability, the extra space
consumes additional memory. Here is an instructional line presented both ways:

10INPUT**FIRST NAME'";N$:FOR T=A TO M:PRINT “"OK™":
IOINPUT*‘FIRST NAME"";N$:FORT = ATOM:PRINT**OK"":

USING MULTIPLE INSTRUCTIONS

Colons allow you to place several instructions within a single program line. Each
program line consumes additional memory. Be careful, however, crunching IF state-
ments. Any instruction after the IF statement with the same line number can be bypassed
along with the IF . . . THEN condition. The following line is the equivalent of five
lines:

(A)
10 PRINTX:INPUTY:PRINTY:SCNCLRO:7]

(B)
10 PRINTX
20 INPUTY
30 PRINTY
40 SCNCLRO
50 PRINTJ

Example A requires less space in memory and on disk. Example B requires 16
additional bytes; 2 bytes for each additional line number and 2 bytes for the link to the
next line number.

SYNTAX RELIEF

Some BASIC syntax is very flexible and this flexibility can be used to your advantage.
The LET statement, for example, can be written without LET. LET Y = 2 is the same as
Y = 2. Although it is good practice to initialize all variables to zero, it is not necessary
since the computer automatically sets all variables to zero, including subscripted vari-
ables. DIMension all arrays (subscripted variables) to have twelve or more elements. The
C128 automatically dimensions each variable to have eleven subscripted elements if no
dimension is specified following DIM and the variable names. Often semicolons are not
required in PRINT statements. Both of these perform the same results:

10 PRINT**A™;Z8$;"*WORD ";CHR$(65);""NOW $”
20 PRINT*AZ$**“WORD ’CHRS$(65) ‘'NOW §*°

REMOVING REM STATEMENTS

Although REM statements are useful to the programmer, removing them makes a
considerable amount of memory available again. It might be a good idea to create a
separate listing with REM statements.

USING VARIABLES

Replace repeated numbers with a variable. This is especially important with large
numbers such as memory addresses. POKEing several numbers in sequence conserves
memory if a variable is used, such as POKE 54273+ V, etc. Of course, single-letter
variable names require the least memory. Reuse old variables such as those used in FOR
.. . NEXT loops. Whenever possible, make use of integer variables since they consume
far less memory than floating-point variables.

ONE STEP BEYOND SIMPLE BASIC

97

USING BASIC INTELLIGENTLY

If information is used repeatedly, store the data in integer arrays, if possible. Use DATA
statements where feasible. Where a similar line is used repeatedly, create a single line
with variables and access it with GOSUBs. Use TAB and SPC functions in place of
extensive cursor controls.

MASKING BITS

Any of the bits within a byte can be controlled individually, using the Boolean operators
AND and OR. Calculations with AND and OR are based on a truth table (Table 3-1)
showing the results given all possible true and false combinations of the arguments X and Y.

XY XANDY XORY
00 0 0
01 0 1
1 0 0 1
11 1 1

Table 3-i. AND and OR Truth Table

With “*0"" representing False and “*1”* Truth, Table 3—1 shows how the operators
AND and OR work. The result of an AND operation between two bits is only true if
both bits are true (1). Otherwise the combination is false. Any bit combination with a
zero yields a zero in an AND operation. The result of an AND operation is only true
(equal to 1) if both bits are true (equal to 1).

The result of an OR operation is only false if each bit is false. Otherwise the result
is true. Any bit combination with a one yields a one in an OR operation. ONLY two
zeros result in a zero.

Observe the following example with the numbers 5 and 6 in binary form. When
you type the command PRINT 5 AND 6, the result is 4. Here’s why:

5= 0000 0101
6= 0000 0110

ANDed 4= 0000 0100

Instead of adding, ANDing performs a bit-by-bit comparison in accordance with
the rules of the AND truth table. Compare column-for-column from the right: 1 AND
0=0, 0 AND 1=0, 1 AND I=1, 0 AND 0=0. The result *“0100*" converted to
decimal is the number 4.

What is the effect of ORing 5 and 67 Again comparing bit-by-bit, using the rules
from the OR truth table:

5= 0000 0101
6= 0000 0110

ORing 7= 0000 0111

The result 0111 is decimal 7. Notice from the right that] OR 0=1,0OR 1=1, 1 OR
I=1and 0 OR 0=0.

Understanding how these OR and AND combinations work gives you the power to
control individual bits within your computer’s memory. Many of the 8-bit bytes utilize
each bit for separate control parameters.

USING OR AND AND TO MODIFY

THE BIT VALUES IN ABYTE

A byte is a group of eight binary digits labeled, from right to left, O to 7. Each binary
digit position represents a decimal value equal to two raised to the power of the position
number. For example, the decimal value of position 6 is 2%*6 or 64. From left to right
the positions are:

76 54 32 10
and the corresponding values in decimal are:
128 64 32 16 8 4 2 1

To turn on a bit, place a **1”" in its position. To turn it off, enter a “*0”’. Hence the
binary 10010000 has bits 4 and 7 on. Their values are 128 and 16. So if a particular byte
is POKED with 144 (128 + 16), these two bits are turned on. To turn bits on, store
(POKE) a new value to that byte-——a value equal to the sum of all the decimal
equivalents of all the bits that are enabled (on). Of course. you do not always know
which bits are already on. You may only want to turn on specific bits without
affecting the others. That’s the purpose of the logical operations AND and OR.

First, obtain the decimal value of the byte by PEEKing. Then add the decimal
value of the bit you wish to turn on. The following command turns on bit 2 of memory
address **V’’:

POKEV, PEEK(V)+4

This assumes bit 2 (third bit from the right) had a value of 0. Had it already been
“*on,”” it would have no effect. To prevent such confusion, the C128 uses the power of
Boolean Logic.

Ideally you want to read (PEEK) each bit. The proper approach is to OR the byte
with an operand byte which will yield the desired binary value. Suppose we want to
turn on bit 5; the operand byte becomes 00100000. By ORing this with any byte it will
affect onlv bit 5, because any combination involving 1 in an OR operation results in 1.
Thus no bit already ON can be inadvertently turned off.

POKEV,PEEK(V) OR 32

Just as OR turns a switch on, AND can turn a switch off—with a slight difference.
AND results in a **1’" only if both bits compared are **1.”” The trick is to compare the

ONE STEP BEYOND SIMPLE BASIC

99

byte in question with an operand byte of all ON bits except the bit you want turned off.
Bits to remain on will not be affected. To turn off bit 5, AND the byte in question with
the mirror image of 00100000 or the operand byte 11011111. In decimal this value is
always 255 minus the value of the bit(s) you want to turn off. Thus:

POKEV.PEEK(V) AND (255-32)

turns off bit 5.
Use OR to turn bits ON
Use AND to turn bits OFF

EXAMPLES:
POKEW PEEK(W) OR 129 Turns ON bits 0 and 7 of memory address W.

POKES,PEEK(S) AND 126 Turns OFF bits 0 and 7 of memory register S
(Remember 255-129 = 126)

POKEC,PEEK(C)AND254 Turns OFF bit 0
POKEC,PEEK(V)OR63 Turns ON all bits except 6 and 7

DEBUGGING PROGRAMS

No program when first written is free of “‘bugs’’ or errors. The process of finding errors
and removing them, debugging, combines editing with problem solving.

SYNTAX ERRORS

Syntax errors result from misspelling or misusing the guidelines and formats of BASIC
commands. An error message is displayed on the screen defining the line where the
error occurs. Typing HELP <RETURNZ>> or pressing the HELP key also highlights the
line with the error. Common syntax errors include misspelled BASIC terms, misplaced
punctuation, unpaired parentheses, reserved variable names such as TIS, use of line
numbers that do not exist, etc.

LOGIC ERRORS
Sometimes errors exist in the program logic, with the result that the program doesn’t do
exactly what you think it is supposed to do. Some logic errors are caused by the order of
instructions. One common fault occurs when you forget that anything on a line after an
IF statement is affected by the 1F condition.

Some errors in logic require a trial-and-error investigation. This is best initiated by
asking the computer for help in BASIC.

USING A DELAY

Where the computer responds rapidly, it often helps to see a response by inserting a
SLEEP command for a temporary time delay. This gives you a chance to see exactly
what is happening in the program.

USING PRINT AND STOP

[nsert STOP statements within your program prior to the suspect instruction line. Good
locations are at the end of specific tasks. Run the program. After the STOP statement
puts you into direct mode, use the PRINT command to identify clues to the problem by
determining the values of the various variables, especially those within loops. Check
these with what you expect. Continue the program with CONT to the next STOP
statement until you modify your program.

TRAPPING AN ERROR
Debugging is the art of detecting the source of problem. The following program is
perfectly valid; however, it produces an error when B equals zero.

10 INPUT A,B
20 PRINT A/B
30 GOTO 10

Although in this case the computer defines the error as a DIVISION BY ZERO
error, it is not always obvious how the variable B became a zero. It could have been
derived from a complex formula embedded in your program, or directly inputting the
value zero into a variable.

The BASIC TRAP command has a technique of trapping such an error in a
program without crashing. Since you can’t always foresee all the possible values of the
variable B, you can screen the probable error of division of zero by including a TRAP at
the beginning of the program.

5 TRAP 50
10 INPUT A,B
20 PRINTA/B
30 GOTOIlOo

50 PRINT*DIVISION BY ZERO IS NOT POSSIBLE”
60 PRINT*ENTER ANOTHER NUMBER FOR B BESIDES ZERO™’
70 RESUME

RESUME is required after the TRAP response in order to reactivate the TRAP. If
you include the option to enter a replacement for B, RESUME without a line number
returns to the cause of the error—Iline 20—and executes it as follows:

65 INPUT B

The use of RESUME NEXT proceeds with the next line after the TRAP command,
i.e., line 10.

TRAP tells the computer to go to a specific line number whenever an error occurs.
Do NOT use TRAP until you have removed all syntax errors first. TRAP can only catch
the error condition it is looking for. An error in the syntax or the logic of your TRAP
routine may cause an error, or may not catch the error that you are looking for. In other
words, TRAP routines are sensitive to errors, too.

ONE STEP BEYOND SIMPLE BASIC

101

ERROR FUNCTIONS

Several reserved variables inherent in the system store information about program
errors. ER stores the error number. EL stores the relevant program line number.
ERRS$(N) returns the string representing ER or EL. In the example of division by zero,
ERRS$(ER) returns *‘DIVISION BY ZERQO’ and ERRS$(EL) returns *‘BREAK™. Add
this to the program in the previous section. See Appendix A for a complete listing of
errors.

D OS ERRORS
Information on disk errors is determined from the variables DS and DS$ where DS is the
error number (See Appendix B) and DS$ provides the error number, error message, and
track and sector of the error. DS$ reads the disk error channel and is used during a disk
operation to determine why the disk drive error light is blinking.

Trying to read a directory without a disk in place results in the following error
when the PRINT DS$ command is issued:

74, DRIVE NOT READY, 00, 00

Appendix B highlights specific causes of errors. To convert a function key to read
the disk-drive error channel automatically, use:

KEY [, “*PRINT DSS$ + CHRS(13)
TRACING AN ERROR

Some programs have many complex loops that are tedious to follow. A methodical
step-by-step trace is useful. The BASIC TRON and TROFF commands can be used
within a program as a debugging tool to trace specific routines.

Some errors can only be found by acting like the computer and methodically
following each instruction step-by-step, and then doing all the calculations until you
discover something wrong. Fortunately the Commodore 128 can trace errors for you.
Enter the direct command TRON prior to running a program. The program displays each
line number as they occur in brackets, followed by each result. (To slow down the
display, hold the Commodore (€z) key down.)

Try it with this double loop:

10 FOR A=1ITO05

20 FOR B=2T06

30 C=B*A: K=K+ C:PRINTK
40 NEXTB:NEXTA

50 PRINTK

The results will start off like this:

[10] [20] [30] {30] [30]2
[40] [30] [30] [30]5

meaning the first printed result is the number 2 after operations in lines 10, 20, 30 are
performed. Then lines 40 and 30 result in 5, etc. Notice three activities were performed
in line 30. The Trace function is turned off with the direct command TROFF.

WINDOWING

The standard screen display size is 40- or 80-columns by 25 lines. It is often convenient
to have a portion of the screen available for other work. The process of producing and
isolating small segments of your screen is called **windowing.”

DEFINING A WINDOW
There are two ways to create a window—either directly or within a program using the
WINDOW command. Using the ESCape key followed by a T or B is all that is
necessary to describe and set a window.

Here’s how to define a window in direct mode:

I. Move the cursor to the upper-left corner position of the proposed window.
Press the (ESC) escape key, then press the letter T key.

2. Move the cursor to the bottom right corner and press the escape key (ESC)
then press the letter B key.

Now that vour window is in effect, all commands and listings remain in the
window until you exit by pressing the HOME key twice. This is useful if you have a
listing on the main screen and wish to keep it while you display something else in a
window. See Chapter 13, the Commodore 128 Operating System, under the screen
editor for special ESCape controls within a window.

Although it is possible to define several windows simultaneously on the screen, only
one window can be used at a time. The other windows remain on the display, but they are
inactive. To re-enter a window you have exited, define the top and bottom corners of the
window with the ESC T and ESC B commands, respectively, as you did originally.

The second way to define a window is with the BASIC window command. The
command:

WINDOW 20,12,39,24,1

establishes a window with the top-left corner at column 20, row 12, and the bottom-
right corner at column 39, row 24. The 1 signifies the area to be cleared. Once this
command is specified, all activities are restricted to this window.

Use the window command within a program whenever you want to perform an
activity in an isolated area on the screen.

ONE STEP BEYOND SIMPLE BASIC

103

ADVANCED BASIC
PROGRAMMING TECHNIQUES
FOR COMMODORE MODEMS

The following information tells you how to:

1. Generate Touch Tone™ frequencies

2. Detect telephone ringing

3. Program the telephone to be on or off the hook
4. Detect carrier

The programming procedures operate in C128 or C64 modes with the Modem/300.
In C128 mode, select a bank configuration which contains BASIC, I/O, and the Kernal.

GENERATING TOUCH TONE
(DTMF) FREQUENCIES

Each button on the face of a Touch Tone telephone generates a different pair of tones
(frequencies). You can simulate these tones with your Commodore 128 computer. Each
button has a row and column value in which you must store the appropriate memory
location in order to output the correct frequency. Here are the row and column
frequency values that apply to each button on the face of your Touch Tone telephone:

TOUCH TONE FREQUENCY TABLE

COLUMN 1 (1029 HZ) COLUMN 2 (1336 HZ) COLUMN 3 (1477 HZ)
Row 1 (697 Hz) 1 2 3
Row 2 (770 Hz) 4 5 6
Row 3 (852 Hz) 7 8 9
Row 4 (941 Hz) * 0 #

To generate these tones in BASIC with your Commodore 128, follow this procedure:

I. Initialize the sound (SID) chip with the following BASIC statements:

SID = 54272

POKE SID + 24,15:POKE SID + 4,16

POKE SID + 11,16:POKE SID + 5,0:POKE SID + 12,0

POKE SID + 6,15*%16:POKE SID + 13,15*16:POKE SID + 23.0

2. Next, select one row and one column value for each digit in the telephone
number. The POKE statement for each row and column are as follows:

Column 1: POKE SID, 117:POKE SID + 1,77

Column 2: POKE SID,152:POKE SID + 1,85

Column 3: POKE SID,I61, POKE SID + 1,94
Row 1: POKE SID + 7,168:POKE SID + 8,44
Row 2: POKE SID + 7,85,:POKE SID + §,49
Row 3: POKE SID + 7,150:POKE SID + 8,54
Row 4: POKE SID + 7,74 :POKE SID + 8,60

For example, to generate a tone for the number 1, POKE the values for row
1, column 1 as follows

POKE SID + 7,168:POKE SID + 8,44:REM ROW 1
POKE SID,117:POKE SID + 1,77:REM COLUMN 1

3. Turn on the tones and add a time delay with these statements:

POKE SID + 4,17:POKE SID + 11,17:REM ENABLE TONES
FOR I=1 TO 50:NEXT:REM TIME DELAY

4. Turn off the tones and add a time delay with the following statements:

POKE SID + 4,16:POKE SID + 11,16:REM DISABLE TONES
FOR I=1 TO 50:NEXT:REM TIME DELAY

5. Now repeat steps 2 through 4 for each digit in the telephone number you are
dialing.
6. Finally, disable the sound chip with this statement:

POKE SID + 24,0
DETECTING TELEPHONE RINGING

To detect whether your telephone is ringing using a Commodore 128, use the following
statement:

IF (PEEK(56577) AND 8) = 0 THEN PRINT *‘RINGING’’

If bit 3 of location 56577 contains a value other than O, the phone is not ringing.

PROGRAMMING THE TELEPHONE
TO BE ON OR OFF THE HOOK

To program the phone to be off the hook using a Commodore 128, enter the following
statements in a program:

OH = 56577:HI = 32:1.O = 255 - 32
POKE (OH + 2),(PEEK(OH + 2) OR HD)
POKE OH.,(PEEK(OH) AND LO)

To hang up the phone with a Commodore 128, enter this statement in a program:

POKE OH,(PEEK(OH) OR HI)

ONE STEP BEYOND SIMPLE BASIC

{05

Here is the procedure to dial and originate a communication link:

Set the modem’s answer/originate switch to the **O’’ for originate.

Program the telephone to be OFF the hook.

Wait 2 seconds (FOR 1 = 1 to 500:NEXT:REM 2-SECOND DELAY)

Dial each digit and follow it with a delay (FOR 1 = 1 TO 50:NEXT)

When a carrier (high pitched tone) is detected, the Modem/300 automatically
goes on-line with the computer you are connecting with.

Program the phone to hang up when you are finished.

b=

*

Here is the procedure to answer a call:

1. Set the modem’s answer/originate switch to ‘A’ for answer.

2. To manually answer, program the telephone to be OFF the hook.

3. To automatically answer, detect if the phone is ringing then program the
phone to be OFF the hook.

4. The Modem/300 automatically answers the call.

5. Program the phone to hang up when you are finished.

DETECTING CARRIER

Your Commodore Modem/1200 and Modem/300 are shipped from the factory with the
ability to detect a carrier on the Commodore 128.

That ability is useful in an unattended auto-answer mode. By monitoring the
carrier detect line, the computer can be programmed to hang up after loss of carrier.
Since a caller may forget to hang up, your program should monitor the transmit and
receive data lines. If there is no activity for five minutes or so, the modem itself should
hang up.

To detect carrier on the Commodore 128, the following statement can be used in a
BASIC program:

OH = 56577:
IF ((PEEK (OH) AND 16) = 0) THEN PRINT ‘*CARRIER DETECTED”’

If bit 4 of location 56577 contains a value other than 0, then no carrier is detected.

ROTARY (PULSE) DIALING

In order to dial a number with a modem, the software in the computer must generate
pulses at a prescribed rate. In the United States and Canada, the rate is between 8 and 10
pulses per second with a 58% to 64% break duty cycle. Most people, however, use 10
pulses per second with a 60% break duty cycle.

So to make a call, your software must first take the phone ‘‘off-hook’” (the
equivalent of you picking up the receiver). Then to dial the first digit, a 3 for instance,

the software must put the phone on-hook for 60 milliseconds and off-hook for 40
milliseconds. Repeat this process three times to dial a 3.

The same method is used to dial other digits, except O, which is pulsed ten times.
Pause at least 600 milliseconds between each digit.

USING E S C APE CODES

To perform any of the escape capabilities within a program, use a line such as:
10150 PRINT CHR$(27)+ “*U”"

to create an underline cursor (in 80-column only). For example, to clear from the cursor
to the end of a window:

10160 PRINT CHRS$(27) +**@"”

(See the Screen Editor section of Chapter 13 for all the escape and control codes
available on the Commodore 128.)

RELOCATING BASIC

To relocate the beginning or ending of BASIC (in C128 mode) for additional memory or
to protect machine-language programs from being overwritten by BASIC text, it is
necessary to redefine the starting and ending pointers in required memory addresses.

The Start of BASIC pointer is located at address 45($2D) and 46($2E). The Top
of BASIC pointer is at addresses 4626($1212) and 4627($1213). The following instruc-
tion displays the default locations of the beginning and end of BASIC text, respectively
(when a VIC bit-mapped screen is not allocated):

PRINT PEEK(45),PEEK (46),PEEK(4626),PEEK (4627)
I 28 0 255

Since the second number in each case is the high byte value, the default start of
basic is 28%256 plus 1 or 7169 while the top is 255%256 or 65280.

The following command reduces the size of BASIC text (program) area by 4K by
lowering the top of BASIC to address 61184 (239%256):

POKE4626,239:POKE4627 ,0:NEW

To move the beginning of BASIC up in memory by 1K, from 7168 to 8192, use
this command line:

POKE 46,32:POKE45,1:NEW

This is the case only when a bit-mapped graphics screen is not allocated. Remem-
ber, the beginning of BASIC starts at 16384($4000) when a bit-mapped screen is
allocated, and other parts of memory are shifted around.

ONE STEP BEYOND SIMPLE BASIC

107

MERGING PROGRAM AND FILES

Files can be merged (combined) by opening an existing file and locating the pointer to
the end of the file so subsequent data can be written to the disk file. C128 BASIC has
included the APPEND command to accomplish this:

APPEND#S5, “‘FILE NAME"’

opens channel 5 to a previously stored file named ‘‘FILE NAME.”’ Subsequent write
(PRINT#S5) statements will add further information to the file. APPEND is primarily
used for data files.

The command CONCAT allows the concatenation (combine in sequence) of two
files or programs while maintaining the name of the first.

CONCAT*‘PART2B’’ TO **PART2"

creates a new file called Part 2, consisting of the old Part 2, plus the new Part 2b in
sequence. Concatenated BASIC program files must be renumbered before they can
work. Other corrections may also be necessary.

The BASIC routines described in this chapter can greatly enchance the capabilities
of your programs. So far, BASIC has been discussed in detail. The machine language
programming introduced in Chapter 5 can extend program capabilities even further.
And, as shown in Chapter 7, for still greater flexibility and power, you can combine
BASIC and machine language in your programs.

COMMODORE 128
GRAPHICS
PROGRAMMING

HOW TO USE
THE GRAPHICS SYSTEM

COMMODORE 128 VIDEO FEATURES

In C128 Mode, Commodore BASIC 7.0 offers fourteen high-level graphics commands
that make difficult programming jobs easy. You can now draw circles, boxes, lines,
points and other geometric shapes, with ten high level commands such as DRAW, BOX
and CIRCLE, and with four sprite commands. (The sprite commands are described in
Chapter 9.) You no longer have to be a machine language programmer, or purchase
additional graphics software packages to display intricate and visually pleasing graphics
displays—the Commodore 128 BASIC graphics capabilities take care of this for you. Of
course, if you are a machine language programmer or a software developer, the
exceptional C128 video hardware features offer high price/performance value for any
microcomputer application.

The C128 graphics features include:
B Specialized graphics and sprite commands
® |6 colors
® 6 display modes, including:
Standard character mode
Multi-color character mode
Extended background color mode
Standard bit map mode
Multi-color bit map mode
Combined bit map and character modes (split-screen)
B 8§ programmable, movable graphic objects called SPRITES which make anima-
tion possible
® Custom programmable characters
B Vertical and horizontal scrolling

The Commodore 128 is capable of producing two types of video signals: 40-
column composite video, and 80-column RGBI video. The composite video signal,
channeled through a VIC II (Video Interface Controller) chip (8564)—similar to that
used in the Commodore 64—mixes all of the colors of the spectrum in a single signal to
the video monitor. The 8563 separates the colors red, green and blue to drive separate
cathode ray guns within the video monitor for a cleaner, crisper and sharper image than
composite video.

The VIC II chip supports all of the Commodore BASIC 7.0 graphics commands,
SPRITES, sixteen colors, and the graphic display modes mentioned before. The 80-
column chip, primarily designed for business applications, also supports sixteen colors
(a few of which are different from those of the VIC chip), standard text mode, and bit
map mode. Sprites are not available in 80-column output. Bit map mode is not
supported by the Commodore BASIC 7.0 language in 80-column output. The 80-column
screen can be bit mapped through programming the 8563 video chip with machine
language programs. See Chapter 10, Programming the 80-Column (8563) Chip, for
information on bit mapping the 80-column screen.

COMMODORE 128 GRAPHICS PROGRAMMING

This chapter discusses how to use the Commodore 128 graphics features through
BASIC using the VIC (40-column) screen. Except for the sprite commands, each
graphic command is listed in alphabetical order. The sprite commands are covered in
Chapter 9. Following the format of each command are example programs that illustrate
the features of that command. Wherever possible, machine language routines are
included to show how the machine language equivalent of a BASIC graphics command
operates.

Chapter 8, The Power Behind Commodore 128 Graphics, is a description of the
inner workings of the Commodore 128 graphics capabilities. It explains how screen,
color and character memory are used and how these memory components store and
address data in each display mode. Chapter 9 then explains how to use sprites with the
new BASIC commands. Chapter 9 also discusses the inner workings of sprites, their
storage and addressing requirements, color assignments, and describes how to control
sprites through machine language.

TYPES OF SCREEN DISPLAY

Your C128 displays information several different ways on the screen; the parameter
*‘source’” in the command pertains to three different modes of screen display.

TEXT DISPLAY

Text display shows only text or characters, such as letters, numbers, special symbols
and the graphics characters on the front faces of most C128 keys. The C128 can display
text in both 40-column and 80-column screen formats. Text display includes standard
character mode, multi-color character mode and extended background color mode.

The Commodore 128 normally operates in standard character mode. When you
first turn on the Commodore 128, you are automatically in standard character mode. In
addition, when you write programs, the C128 is in standard character mode. Standard
character mode displays characters in one of sixteen colors on a background of one of
sixteen colors.

Multi-color character mode gives you more control over color than the standard
graphics modes. Each screen dot, a pixel, within an 8-by-8 character grid can have one
of four colors, compared with the standard mode which has only one of two colors.
Multi-color mode uses two additional background color registers. The three background
color registers and the character color register together give you a choice of four colors
for each dot within an 8-by-8 dot character grid.

Each pixel in multi-color mode is twice as wide as a pixel in standard character
mode and standard bit map mode. As a result, multi-color mode has only half the
horizontal resolution (160 x 200) of the standard graphics modes. However, the
increased control of color more than compensates for the reduced horizontal resolution.

Extended background color mode allows you to control the background color and
foreground color of each character. Extended background color mode uses all four
background color registers. In extended color mode, however, you can only use the first
sixty-four characters of the screen code character set. The second set of sixty-four
characters is the same as the first, but they are displayed in the color assigned to

background color register two. The same holds true for the third set of sixty-four
characters and background color register three, and the fourth set of sixty-four characters
and background color register four. The character color is controlled by color memory.
For example, in extended color mode, you can display a purple character with a yellow
background on a black screen.

Each of the character display modes receives character information from one of
two places in the Commodore 128 memory. Normally, character information is taken
from character memory stored in a separate chip called ROM (Read Only Memory).
However, the Commodore 128 gives you the option of designing your own characters
and replacing the original characters with your own. Your own programmable characters
are stored in RAM.

BIT MAP DISPLAY

Bit map mode allows you to display highly detailed graphics, pictures and intricate
drawings. This type of display mode includes standard bit map mode and multi-color bit
map mode. Bit map modes allow you to control each individual screen dot or pixel
(picture element) which provides for considerable detail in drawing pictures and other
computer art. These graphic displays are only supported in BASIC by the VIC chip.

The 80-column chip is designed primarily for character display, but you can bit
map it through your own programs. See Chapter 10, Programming the 80-Column (8563)
Chip, for detailed information.

The difference between text and bit map modes lies in the way in which each
screen addresses and stores information. The text screen can only manipulate entire
characters, each of which covers an area of 8 by 8 pixels on the screen. The more
powerful bit map mode exercises control over each pixel on your screen.

Standard bit map mode allows you to assign each screen dot one of two colors. Bit
mapping is a technique that stores a bit in memory for each dot on the screen. In
standard bit map mode, if the bit in memory is turned off, the corresponding dot on the
screen becomes the color of the background. If the bit in memory is turned on, the
corresponding dot on the screen becomes the color of the foreground image. The series
of 64,000 dots on the screen and 64,000 corresponding bits in memory control the
image you see on the screen. Most of the finely detailed computer graphics you see in
demonstrations and video games are bit mapped high-resolution graphics.

Multi-color bit map mode is a combination of standard bit map mode and
multi-color character mode. You can display each screen dot in one of four colors within
an 8 X & character grid. Again, as in multi-color character mode, there is a tradeoff
between the horizontal resolution and color control.

SPLIT SCREEN DISPLAY

The third type of screen display, split screen, is a combination of the first two types.
The split-screen display outputs part of the screen as text and part in bit map mode
(either standard or multi-color). The CI128 is capable of this since it depends on two
parts of its memory to store the two screens: one part for text, and the other for
graphics.

COMMODORE 128 GRAPHICS PROGRAMMING

113

COMMAND SUMMARY

Followingisabriefexplanation of each graphics command available in BASIC7.0:

BOX: Draws rectangles on the bit-map screen

CHAR: Displays characters on the bit-map screen

CIRCLE: Draws circles, ellipses and other geometric shapes

COLOR: Selects colors for screen border, foreground, background and characters

DRAW: Displays lines and points on the bit-map screen

GRAPHIC: Selects a screen display (text, bit map or split-screen bit map)

GSHAPE: Gets data from a string variable and places it at a specified position on the
bit-map screen

LOCATE: Positions the bit-map pixel cursor on the screen

PAINT: Fills area on the bit-map screen with color

SCALE: Sets the relative size of the images on the bit-map screen

SSHAPE: Stores the image of a portion of the bit-map screen into a text-string variable

WIDTH: Sets the width of lines drawn

The following paragraphs give the format and examples for each of the non-sprite
BASIC 7.0 graphic commands. For a full explanation of each of these commands, see
the BASIC 7.0 Encyclopedia in Chapter 2.

BOX

Draw a box at a specified position on the screen.

BOX [color source], X1, Y1[,X2,Y2][,angle][,paint]

where:

color source 0= Background color
1 =Foreground color
2= Multi-color 1
3 = Multi-color 2

X1, Y1 Top left corer coordinate (scaled)

X2, Y2 Bottom right corner opposite X1, YI, is the pixel cursor
location (scaled)

angle Rotation in clockwise degrees; default is O degrees

paint Paint shape with color

0=Do not paint
| = Paint

EXAMPLES:

150

10
20
30
40
50
60
70
80
950
100

10
20
30
40
50
60
70
80
90
100
110

150
160
170
180
190
200

COLOR 0,1:COLOR 1,6:COLOR 4,1
GRAPHIC 1, 1:REM SELECT BMM
BOX 1,10,10,70,70,90,1:REM DRAW FILLED GREEN BOX
FOR I=20 TO 140 STEP 3
BOX 1,I,I,I+60,1+60,I+80:REM DRAW AND ROTATE BOXES
NEXT
BOX 1,140,140,200,200,220,1:REM DRAW 2ND FILLED GREEN BOX
COLOR 1,3:REM SWITCH TO RED
BOX 1,150,20,210,80,90,1:REM DRAW FILLED RED BOX
FOR I=20 TO 140 STEP 3
BOX 1,I1+130,I,I+190,I+60,I+70:REM DRAW AND ROTATE RED BOXES
NEXT
BOX 1,270,140,330,200,210,1:REM DRAW 2ND FILLED RED BOX
SLEEP 5 :REM DELAY
GRAPHIC 0,1:REM SWITCH TO TEXT MODE

COLOR 0,1:COLOR 4,1:COLOR 1,6
GRAPHIC 1,1
BOX 1,0,0,319,199
FOR X=10 TO 160 STEP 10
C=X,/10
COLOR 1,C
BOX 1,X,X,320-X,320~-X
NEXT
SLEEP S
GRAPHIC 0,1

COLOR 0,1:COLCR 4,1:COLOR 1,6
GRAPHIC 1,1
Box 1,50,50,150,120

BOX 1,70,70,170,140

DRAW 1,50,50 TO 70,70

DRAW 1,150,120 TO 170,140
DRAW 1,50,120 TO 70,140
DRAW 1,150,50 TC 170,70
CHAR 1,20,20,"CUBE EXAMPLE"
SLEEP 5

GRAPHIC 0,1

COLOR 1,6:COLOR 4,1:COLOR 0,1

GRAPHIC 1,1:REM SELECT BIT MAP MODE
DO :REM CALCULATE RANDOM POINTS
X1=INT(RND(1)*319+1)
X2=INT(RND(1)*319+1)

X3=INT(RND(1)*319+1)

X4=INT(RND{1}*319+1}

Y1=INT{RND{1)*199+1)

Y2=INT(RND(1)*199+1)

Y3=INT{(RND{1)*199+1)

Y4=INT{RND(1)*199+1)

BOX 1,X1,Y1,X2,Y2:REM DRAW THE RANDOM BOXES
BOX 1,X3,Y3,X4,Y4

DRAW 1,X1,Yl TO X3,Y3:REM CONNECT THE POINTS
DRAW 1,X2,Y2 TO X4,Y4

DRAW 1,X1,Y2 TO X3,Y4

DRAW 1,X2,Yl TO X4,Y3

SLEEP2:REM DELAY

SCNCLR

LOOP:REM LOOP CONTINUOUSLY

COMMODORE 128 GRAPHICS PROGRAMMING

15

CHAR

Display characters at the specified position on the screen.
CHAR [color source],X,Y[,string][,RVS]

This is primarily designed to display characters on a bit mapped screen, but it can also
be used on a text screen. Here’s what the parameters mean:

color source 0= Background
| =Foreground

X Character column (0-79) (wraps around to the next line
in 40-column mode)

Y Character row (0-24)

string String to print

RVS Reverse field flag (0= off, 1 =on)

EXAMPLE:

10 COLOR 2,3: REM multi-color 1 =Red
20 COLOR 3,7: REM multi-color 2=Blue
30 GRAPHIC 3,1

40 CHAR 0,10,10, *“TEXT",0

CIRCLE

Draw circles, ellipses, arcs, etc. at specified positions on the screen.

CIRCLE [color source],X, Y[, Xr][,Yr]
[,sal[,ea][,angle][,inc]

where:
color source 0 =background color
| = foreground color
2 = multi-color 1
3 = multi-color 2
XY Center coordinate of the CIRCLE
Xr X radius (scaled)
Yr Y radius (default is xr)
sa Starting arc angle (default O degrees)
ea Ending arc angle (default 360 degrees)
angle Rotation in clockwise degrees (default is 0 degrees)
inc Degrees between segments (default is 2 degrees)
EXAMPLES:
CIRCLE], 160,100,65,10 Draws an ellipse.
CIRCLEI1, 160,100,65,50 Draws a circle.

CIRCLEI, 60,40,20,18,,,.,45 Draws an octagon.

CIRCLE]1, 260,40,20,,,,,90 Draws a diamond.

CIRCLEL, 60,140,20,18,,,,120 Draws a triangle.

CIRCLEL, +2,+2,50,50 Draws a circle (two pixels down and two to
the right) relative to the original coordinates of
the pixel cursor.

SAMPLE PROGRAMS:

180
190
200
210
220
230

10
20
30
40
50
60
70
80
90

REM SUBMARINE TRACKING SYSTEM
COLOR 0,1:COLOR 4,1:COLOR 1,2:REM SELECT BKGRND, BRDR,SCREEN COLORS
GRAPHIC 1,1:REM ENTER BIT MAP MODE
BOX 1,0,0,319,199
CHAR 1,7,24,"SUBMARINE TRACKING SYSTEM" :REM DISPLAY CHARS ON BIT MAP
COLOR 1, 3:REM SELECT RED
XR=0:YR=0:REM INIT X AND Y RADIUS
DO
CIRCLE 1,160,100,XR,YR,0,360,0,2:REM DRAW CIRCLES
XR=XR+10:YR=YR+10:REM UPDATE RADIUS
LOOP UNTIL XR=90

CIRCLE 0,160,100,XR,YR,0,360,0,2 :REM ERASE CIRCLE

COLOR 1,2 :REM SWITCH TO WHITE

DRAW 1,160,100+XR:DRAW 0,160,100+XR:REM DRAW SUBMARINE BLIP
COLOR 1,3:REM SWITCH BACK TO RED

SOUND 1,16000,15:REM BEEP

CIRCLE 1,160,100,XR,YR,0,360,0,2 :REM DRAW CIRCLE
XR=XR+10:YR=YR+10 :REM UPDATE RADIUS

LOOP UNTIL XR=90 :REM LOOP

LOOP

COLOR 0,1:COLOR 4,1:COLOR 1,7

GRAPHIC 1,1:REM SELECT BMM

X=150:Y= 150:XR=150:YR=150

DO

CIRCLE 1,X,Y,XR,¥YR

X=X+7 :¥=Y-5:REM INCREMENT X AND Y COORDINATES
XR=XR-5 :YR=YR-5:REM DECREMENT X AND Y RADII
LOOP UNTIL XR=0

GRAPHIC 0,1:REM SELECT TEXT MODE

COLOR

Define colors for each screen area.

COLOR source number, color number

This statement assigns a color to one of the seven color areas:

AREA SOURCE

40-column (VIC) background

40-column (VIC) foreground

multi-color 1

multi-color 2

40-column (VIC) border

character color (40- or 80-column screen)
80-column background color

AN W= O

Colors codes are in the range I-16.

COMMODORE 128 GRAPHICS PROGRAMMING

17

COLOR CODE

AW -1 AU W=

COLOR

Black
White
Red
Cyan
Purple
Green
Blue
Yellow

COLOR CODE

9
10
11
12
13
14
15
16

COLOR

Orange
Brown

Light Red
Dark Gray
Medium Gray
Light Green
Light Blue
Light Gray

Color Codes in 40-Column (VIC) Output

EXAMPLE:

COLOR 0, :
COLOR 5, 8:

Changes background color of 40-column screen to black.
Changes character color to yellow.

SAMPLE PROGRAM:

10 REM CHANGE FOREGROUND BIT MAP COLOR

20 GRAPHIC 1,1
30 I=1

40 DO

50 COLOR 1,1

60 BOX 1,100,100,219,159

70 I=I+1:SLEEP 1
80 LOOP UNTIL I=17
90 GRAPHIC 0,1

100 REM CHANGE BORDER COLOR

110 1I=1

120 po

130 COLOR 4,1

140 I=I+1:SLEEP 1
150 LOOP UNTIL 1I=17

160 REM CHANGE CHARACTER COLOR

170 1=1
180 DO
190 COLOR 5,1

200 PRINT"COLOR CODE";I

210 I=I+1:SLEEP 1
220 LOOP UNTIL I=17

230 REM CHANGE BACKGROUND COLOR

240 I=1

250 DO

260 COLOR 0,1

270 I=I+1:SLEEP 1
280 LOOP UNTIL I=l17

290 COLOR 0,1:COLOR 4,1:COLOR 5,2

DRAW

Draw dots, lines and shapes at specified positions on screen.

DRAW [color source], [X1, Y1][TO X2, Y2]...

Here are the parameter values:

where:

color source 0 Bit map background
1 Bit map foreground
2 Multi-color 1
3 Multi-color 2

X1,Y1 Starting coordinate (0,0 through 319,199) (scaled)

X2,Y2 Ending coordinate (0,0 through 319,199) (scaled)
EXAMPLES:

DRAW 1, 100, 50 Draw a dot.

DRAW |, 10, 10 TO 100,60 Draw a line.

SA

10
20
30
40
50
60
70
80
90
100
110
120
130
140
150
160
170
180
190
200
210

10
20
30
40
50
60
70
75
80
90
95
97
100
110
120
130
140
150
160
170
180

DRAW , 10, 10 TO 10,60 TO 100,60 TO 10,10 Draw a triangle.

MPLE PROGRAMS:

REM DRAW EXAMPLES

COLOR 0,1:COLOR 4,1:COLOR 1,6
GRAPHIC 1,1

CHAR 1,10,1,"THE DRAW COMMAND"

X=10

DO

DRAW 1,X,50:REM DRAW POINTS
X=X+10

LOOP UNTIL X=320

CHAR 1,12,7 ,"DRAWS POINTS"

Y=70

DO

Y=Y+5

DRAW 1,1,Y TO Y,Y :REM DRAW LINES

LOOP UNTIL Y=130

CHAR 1,18,11,"LINES"

DRAW 1,110,140 TO 10,199 TO 90,165 TO 40,160 TO 10,140:REM DRAW SHAPE 1
DRAW 1,120,145 TO 140,195 TO 195,195 TO 225,145 TO 120,145:REM DRAW SHAPE
DRAW 1,250,199 TO 319,199 TO 319,60 TO 250,199:REM DRAW SHAPE 3

CHAR 1,22,15,"AND SHAPES"

SLEEP 5:GRAPHIC 0,1

COLOR 0,1:COLOR 4,1:COLOR 1,7

GRAPHIC 1,1:REM SELECT BMM
y=1

DO .

DRAW 1,1,Y TC 320,Y:REM DRAW HORTZONTAL LINES
Y=Y+10

LOOP WHILE Y<200

%=1

Do

DRAW 1,X,1 TO X,200:REM DRAW VERTICAL LINES
X=X+10

LOOP WHILE X<320

COLOR 1,3:REM SWITCH TO RED

DRAW 1,160,0 TO 160,200:REM DRAW X AXIS IN RED

DRAW 1,0,100 TO 320,100:REM DRAW Y AXIS IN RED

COLOR 1,6:REM SWITCH TO GREEN

DRAW 1,0,199 TO 50,100 TO 90,50 TO 110,30 TO 150,20 TO 180,30
DRAW 1,180,30 TO 220,10 TC 260,80 TO 320,0:REM DRAW GROWTH CURVE
CHAR 1,7,23,"PROJECTED SALES THROUGH 1990"

CHAR 1,1,21,"1970 1975 1980 1985 1990"

SLEEP 10:GRAPHIC 0,1:REM DELAY AND SWITCH TO TEXT MODE

COMMODORE 128 GRAPHICS PROGRAMMING

19

GRAPHIC

Select a graphic mode.

Thi

EX

SA

10
20
30
40
50
60

1) GRAPHIC mode [,clear][,s]
2) GRAPHIC CLR

s statement puts the Commodore {28 in one of the six graphic modes:

MODE DESCRIPTION

0 40-column text
1 standard bit map graphics
2 standard bit map graphics (split screen)
3 multi-color bit map graphics
4 multi-color bit map graphics (split screen)
5 80-column text
AMPLES:
GRAPHIC 1,1 Select standard bit map mode and clear the bit map.

GRAPHIC 4,0,10 Select split screen multi-color bit map mode, do not clear
the bit map and start the split screen at line 10.

GRAPHIC 0 Select 40-column text.

GRAPHIC 5 Select 80-column text.

GRAPHIC CLR Clear and deallocate the bit map screen.

MPLE PROGRAM:

REM GRAPHIC MODES EXAMPLE

COLOR 0,1:COLOR 4,1:COLOR 1,7
GRAPHIC 1,1:REM ENTER STND BIT MAP
CIRCLE 1,160,100,60,60

CIRCLE 1,160,100,30,30

CHAR 1,9,24,"STANDARD BIT MAP MODE"

70 SLEEP 4

80 GRAPHIC 0,1:REM ENTER STND CHAR MODE

90 COLOR 1,6:REM SWITCH TO GREEN

100 FOR I=1TO 25

110 PRINT"STANDARD CHARACTER MODE"

120 NEXT

130 SLEEP 4

140 GRAPHIC 2,1:REM SELECT SPLIT SCREEN

150 CIRCLE 1,160,70,50,50

160 CHAR 1,14,1,"SPLIT SCREEN"

170 CHAR 1,8,16,"STANDARD BIT MAP MODE ON TOP"
180 FOR I=1 TO 25

190 PRINT" STANDARD CHARACTER MODE ON THE BOTTOM"
200 NEXT

210 SLEEP 3:REM DELAY

220 SCNCLR:REM CLEAR SCREEN

230 GRAPHIC CLR:REM DE-ALLOCATE BIT MAP
GSHAPE

Retrieve (load) the data from a string variable and display it on a specified coordinate.

GSHAPE string variable [X,Y][,mode]

string Contains shape to be drawn

XY Top left coordinate (0,0 through 319,199) telling where to
draw the shape (scaled—the default is the pixel cursor)

mode Replacement mode:

0 =place shape as is (default)

1 = invert shape

2=0R shape with area

3=AND shape with area

4=XOR shape with area

SAMPLE PROGRAM:

10 REM DRAW, SAVE AND GET THE COMMODORE SYMBOL

20 COLCOR Q,1:COLOR 4,1:COLOR 1,7 e
30 GRAPHIC 1,1:REM SELECT BMM

40 CIRCLE 1,160,100,20,15:REM OUTER CIRCLE

50 CIRCLE 1,160,100,10,9:REM INNER CIRCLE

60 BOX 1,165,85,185,115:REM ISOLATE AREA TC BE ERASED

70 SSHAPE AS5,166,85,185,115:REM SAVE THE AREA INTO AS

80 GSHAPE AS$,166,85,4:REM EXCLUSIVE OR THE AREA-THIS (ERASES) TURNS OFF PIXELS
90 DRAW 0,165,94 TO 165,106:REM TURN OFF (DRAW IN BKGRND COLOR)} PIXELS IN "C="
100 DRAW 1,166,94 TO 166,99 TO 180,99 TO 185,94 TO 166,94:REM UPPER FLAG

110 DRAW 1,166,106 TC 166,101 TC 180,101 TO 185,106 TO 166,106:REM LOWER FLAG
120 PAINT 1,160,110:REM PAINT "C"

130 PAINT 1,168,98 :REM UPPER FLAG

140 SLEEP 5:REM DELAY

150 SSHAPE B$,137,84,187,116:REM SAVE SHAPE INTO BS$

160 DO

170 SCNCLR

180 v=10

190 DO

200 X=10

210 DO

220 GSHAPE BS5,X,Y:REM GET AND DISPLAY SHAPE

230 X=X+50:REM UPDATE X

240 LOOP WHILE X<280

250 Y=Y+40:REM UPDATE Y

260 LOOP WHILE Y<160

270 SLEEP 3

280 LOOP

LOCATE

Position the bit map pixel cursor (PC) on the screen.
LOCATE X, Y

EXAMPLE:

LOCATE 160,100 Position the PC in the center of the bit map screen.
Nothing will be seen until something is drawn.

LOCATE +20,100 Move the PC 20 pixels to the right of the last PC position
and place it at Y coordinate 100.

LOCATE +30,+20 Move the PC 30 pixels to the right and 20 down from
the previous PC position.

PAINT

Fill area with color.

PAINT [color source],X,Y[,mode]

COMMODORE 128 GRAPHICS PROGRAMMING

121

where:
color source 0 Bit map background
1 Bit map foreground (default)
2 Multi-color 1
3 Multi-color 2
XY starting coordinate, scaled (default at pixel cursor (PC))
mode 0 = paint an area defined by the color source selected
1 = paint an area defined by any non-background source
EXAMPLE:
10 CIRCLE 1, 160,100,65,50 Draws an outline of a circle.
20 PAINT 1, 160,100 Fills in the circle with color from source 1 (VIC

foreground), assuming point 160,100 is colored
in the background color (source 0).
10 BOX 1, 10, 10, 20, 20 Draws an outline of a box.

20 PAINT 1, 15, 15 Fills the box with color from source 1, assuming
point 15,15 is colored in the background source
(0).

30 PAINT 1, +10, +10 PAINT the screen in the foreground color source

at the coordinate relative to the pixel cursor’s
previous position plus 10 in both the vertical and
horizontal positions.

SCALE

Alter scaling in graphics mode.
SCALE n [,Xmax,Ymax]
where:

n = 1 (on) or 0 (off)
X max = 320-32767
(default = 1023)
Y max = 200-32767
(default = 1023)

The default scale values are:

Multi-color mode X=0t0159Y = 0to 199
Bit map mode X =0t0319Y = 0to 199
EXAMPLES:
10 GRAPHIC 1,1 Enter standard bit map, turn scaling

20 SCALE 1:CIRCLE 1,180,100,100,100 on to default size (1023, 1023) and
draw a circle.

10 GRAPHIC 1,3 Enter multi-color mode, turn scaling

20 SCALE 1,1000,5000 on to size (1000,5000) and draw a
30 CIRCLE 1,180,100,100,100 circle.
SSHAPE

Save shapes to string variables.

SSHAPE and GSHAPE are used to save and load rectangular areas of multi-color or bit
mapped screens to/from BASIC string variables. The command to save an area of the
screen into a string variable is:

SSHAPE string variable, X1, Y1 [,X2,Y2]

where:
string variable String name to save data in
X1,Y1 Corner coordinate (0,0 through 319,199) (scaled)
X2,Y2 Corner coordinate opposite (X1,Y1) (default is the PC)
EXAMPLES:
SSHAPE A$,10,10 Saves a rectangular area from the coordinate 10,10
to the location of the pixel cursor, into string vari-
able AS$.

SSHAPE B$, 20,30,47,51 Saves a rectangular area from top left coordinate
(20,30) through bottom right coordinate (47,51) into
string variable BS.

SSHAPE D$,+10,+10 Saves a rectangular area 10 pixels to the right and 10
pixels down from the current position of the pixel
Cursor.

Also, see the example program under GSHAPE for another example.

WIDTH
Set the width of drawn lines.

WIDTH n

This command sets the width of lines drawn using BASIC’s graphic commands to either
single or double width. Giving n a value of 1 defines a single width line; a value of 2
defines a double width line.

EXAMPLES:

WIDTH 1 Set Single width for graphic commands
WIDTH 2 Set double width for drawn lines

5

MACHINE
LANGUAGE

ON THE
COMMODORE 128

This chapter introduces you to 6502-based machine language programming. Read this
section if you are a beginner or novice machine language programmer. This section
explains the elementary principles behind programming your Commodore 128 in machine
language. It also introduces you to the 8502 machine language instruction set and how
to use each instruction. If you are already an experienced machine language program-
mer, skip this section and continue to the 8502 Instruction and Addressing Table at the
end of the chapter for reference material on machine language instructions. The 8502
instruction set is exactly the same as the 6502 microprocessor instruction sef.

WHAT IS MACHINE LANGUAGE?

Every computer has its own machine language. The type of machine language depends
on which processor is built into the computer. Your Commodore 128 understands 8502
machine language, which is based on 6502 machine language, to carry out its opera-
tions. Think of the microprocessor as the brain of the computer and the instructions as
the thoughts of the brain.

Machine language is the most elementary level of code that the computer actually
interprets. True machine language is composed of binary strings of zeroes and ones.
These zeroes and ones act as switches to the hardware, and tell the circuit where to apply
voltage levels.

The machine language discussed in this chapter is symbolic 6502 Assembly
language as it appears in the C128 Machine Language Monitor. This is not the
full-blown symbolic assembly language as it appears in an Assembler package, since
symbolic addresses or other higher level utilities that an Assembler software package
would provide are not implemented.

Machine language is the lowest level language in which you can instruct your
computer. BASIC is considered a high-level language. Although your Commodore 128
has BASIC built in, the computer must first interpret and translate it to a lower level that
it can understand, before the computer can act upon BASIC instructions.

With each microinstruction, you give the computer a specific detail to perform.
The computer takes nothing for granted in machine language, unlike BASIC, where
many unnoticed machine-level functions are performed by one statement. One BASIC
statement requires several machine language instructions to perform the same operation.
Actually, when you issue a BASIC command, you are really calling a machine language
subroutine that performs a computer operation.

WHY USE MACHINE LANGUAGE?

If machine language is more intricate and complicated than BASIC. why use it? Certain
applications, such as graphics and telecommunications, require machine language be-
cause of its speed. Since the computer does not have to translate from a higher-level
language, it runs many times faster than BASIC.

MACHINE LANGUAGE ON THE COMMODORE 128

125

Programs such as those used in arcade games cannot operate in the relatively slow
speed of BASIC, so they are written in machine language. Other instances dictate the
use of machine language simply because those programming operations are handled
better than in a high-level language like BASIC. But some programming functions such
as string operations are easier in BASIC than in machine language. In these cases,
BASIC and machine language can be used together. You can find information on how to
mix machine language with BASIC in Chapter 7.

Inside your computer is a perpetually running program called the operating
system. The operating system program controls every function of your computer. It
performs functions at lightning speeds you are not even aware of.

The operating system program is written entirely in machine language and is
stored in a portion of the computer called the Kernal ROM. (Chapter 13 describes how
to take advantage of the machine language programs within the Kernal, and how to use
parts of the operating system in your own machine-language programs.)

Though machine language programming may seem more complicated and difficult
than BASIC at first, think back to when you didn’t know BASIC or your first
programming language. That seemed difficult at first, too. If you learned BASIC or
another programming language, you can learn machine language. Although it’s a good
idea to learn a higher-level language such as BASIC before you start machine language,
it’s not absolutely necessary.

WHAT DOES MACHINE LANGUAGE
LOOK LIKE?

Chapter 2 describes the C128 BASIC 7.0 language. Most statements in BASIC start
with a BASIC verb or keyword, followed by an operand. The BASIC keywords
resemble English verbs. The operands are variables, or constants, that are part of an
expression. For example, A + B = 2, is an expression where A, B, and 2 are operands
in the expression. Machine-language instructions are similar, though they have a uniform
format. Here’s the format for an 8502 symbolic machine language instruction as it
appears in the C128 Machine Language Monitor:

OP-CODE FIELD OPERAND FIELD

OPERATION CODE (OP-CODE) FIELD

The first part of a machine-language instruction is called the operation code or op-code.
The op-code is comparable to a BASIC verb, in that it is the part of the instruction that
performs an action. A machine language op-code is also referred to in an assembly
language as a mnemonic. All 8502 (6502) machine language assembler mnemonics are
three-letter abbreviations for the functions they perform. For example, the first and most
common instruction you will learn is LDA, which stands for LoaD the Accumulator.
This chapter defines all of the mnemonics.

OPERAND FIELD

The second portion of a machine-language instruction is the OPERAND field. In the
C128 Machine Language Monitor, the operand is separated from the op-code with at
least one space and preceded by a ($) dollar sign, (+) plus sign (decimal), (&)
ampersand (octal), or a (%) percent (binary) sign to signify that the operand is a
hexadecimal, decimal, octal or binary number. An ADDRESS is the name of or
reference to a specific memory location within the computer.

The number of a memory location is its address, just like houses on your street are
numbered. Addresses in your computer are necessary so they can receive, store and send
(LOAD) data back and forth to the microprocessor.

When you use the Commodore 128’s built-in machine-language monitor, all
numbers and addresses default to hexadecimal numbers, but they can be represented in
decimal, octal or binary. The address is the hexadecimal number of the specified
memory location. When you use an ASSEMBLER, the addresses are referred to as
symbolic addresses. Symbolic addresses allow you to use variable names, instead of
absolute addresses that specify the actual memory location. You declare the symbolic
address to be the numeric address in the beginning of your machine language program or
allow the assembler to assign the address.

When you refer to that address later in the program, you can refer to the symbolic
address rather than to the absolute address as does the Machine Language Monitor.
Using an assembler and symbolic addresses make programming in machine language
easier than using the machine-language monitor and absolute addresses. You will
learn about the eleven addressing modes later in this chapter.

As you know, the second part of a machine-language instruction is the OPER-
AND. A machine language operand can be a constant; it does not necessarily have to be
an address reference. When a constant in machine language appears in place of an
address as the second part of an instruction, an operation is performed on a data value
rather than a memory location.

A pound sign (#) in front of the operand signifies immediate addressing, which
you will learn more about later in the chapter. The pound sign is only used as an aid for
the symbolic language programmer. The pound sign tells the computer to perform
machine-language instruction on a constant, and not an address. In the case of the
Machine Language Monitor, variable names are not allowed. To represent variables in
the monitor, you must reference a memory location where your variable data value is
stored.

EXAMPLES OF
MACHINE-LANGUAGE INSTRUCTIONS

LDA $100 ; Absolute addressing

LDA $10 ; Zero page absolute addressing
LDA ($FA),Y : Indirect indexed addressing
LDA $2000,X ; Indexed addressing (absolute)
LDA #$10 ; Immediate addressing (constants)

MACHINE LANGUAGE ON THE COMMODORE 128

127

THE SIMILARITIES AND DIFFERENCES BETWEEN AN
ASSEMBLER AND A MACHINE LANGUAGE MONITOR

An assembler and machine-language monitor both provide for symbolic op-codes.
Assemblers typically allow symbolic operands as well, whereas the CI128 machine-
language monitor refers to addresses and operands literally (absolutely).

An assembler typically has two forms of a file: source code and object code.
Source code is the file you create when you are writing the program including symbolic
start addresses and comments.

The source code file is not executable. It must be assembled (in an intermediate
process) into object code. which is executable code.

The machine language monitor start address is determined by where you place the
actual instructions in memory. The monitor does not provide for comments. The resulting
program, once it is input, is executed immediately as a binary file. No intermediate
assembly step is needed.

THE 8502 MICROPROCESSOR REGISTERS

You have learned that an address is a reference to a specific memory location among the
2 banks of RAM within the Commodore 128. Separate and independent of those RAM
locations are special purpose work and storage areas within the microprocessor chip
itself, called registers. These registers are where the values are manipulated. The
manipulation of the microprocessor registers and their communication with the comput-
er's memory (RAM and ROM) accomplishes all the functions of machine language and
your computer’s operating system.

Figure 5-1 shows a block diagram of the 8502 microprocessor. As shown in the
figure, the 8502 microprocessor registers are:

Accumulator

X index register
Y index register
Status register
Program counter
Stack pointer

Following are descriptions of these registers.

THE ACCUMULATOR

The accumulator is one of the most important registers within the 8502 microprocessor.
As the name implies, it accumulates the results of specific operations. Think of
the accumulator as the doorway to your microprocessor. All information that enters
your computer must first pass through the accumulator (or the X or Y register).

For example, if you want to store a value within one of the RAM locations, you must
first load the value into the accumulator (or the X or Y register) and then store it into the
specified RAM location. You cannot store a value directly into RAM, without placing it
into the accumulator or the index registers first. (The index registers are described in the
following section.)

DATA
DIRECTION Po---Pg

REGISTER T T

PERIPHERAL

PERIPHERAL
TPUT

K > OUiPY K P | INTERFACE
REGISTER

BUFFER

Ao - —
INDEX
REGISTER INTERRUPT
5 i©
A, b
1
A, = 1 INDEX
REGISTER
x
Ay e
2 K
Ay - — STACK
[eet " POINT
W 2 REGISTER
S
A, woo 2 -
w
S &
o i INSTRUCTION
Ay w ziey DECODE
4 wo L
k>
A, g (L SO
s 4
< | — & 4
Ay w— oy g i]
= - ACCUMULATOR TIMING
< 2 A [*1 conTRGL
=L g
Ay @ &
Wi Z
w
Ay = o K4 PCL iy ? ¥
hd B o o IN
An < = ™ K= pCH ! i
S — PROCESSOR |
KA STATUS i
A‘2 e bnd REGISTER ¢
INPUT
E DATA
— LATCH
A,3 g — {OL} T
i L—>RM
A, F— i
DEAJFAFEEURS ENSYRUCTT!ON
A, - - REGISTER
< L) J ui
YYYY t{ [XX3)
2)
LEGEND 40 |
-0 |
0 D’ f T,
s sBITUNE 1| Dama
i » D. | BUS
- D,
] = 1BITUNE - 0,
o,

Figure 5-1. 8502 Block Diagram

MACHINE LANGUAGE ON THE COMMODORE 128

129

All mathematical operations are performed within the arithmetic logic unit (ALU)
and stored in the accumulator. It is considered a temporary mathematical work area. For
example, you want to add two numbers, 2 + 3. First, load the accumulator with the 2.
Next add 3 with the ADC mnemonic. Now, you want to perform another operation. You
must store the answer from the accumulator into a RAM location before you perform the
next math operation. If you don’t, your original answer is erased.

The accumulator is so important that it has an addressing mode of its own. All the
instructions using this mode pertain specifically to the accumulator. The following three
sample instructions pertain solely to the accumulator in its own addressing mode:

LDA - LOAD accumulator with memory
STA - STORE the accumulator in memory
ADC - ADD contents of memory to the accumulator

Details on all of the accumulator addressing commands are given later in this chapter.

THE X AND Y INDEX REGISTERS

The second most used registers are the X and Y index registers. These index registers are
used primarily to modify an address by adding an index within a machine-language
instruction. They also can be used as temporary storage locations or to load values and
store them in RAM like the accumulator.

When modifying an address, the contents of the index registers are added to an
original address, called the base address, to find an address relative to the base address.
The resulting address yields the effective address—i.c., the location where a data value
is stored or retrieved. The effective address is acted upon by machine-language instruc-
tions. For example, you want to place the value 0 in locations 1024 through 1034. In
BASIC, here’s how you do it:

10 FOR 1 = 1024 to 1034
20 POKE 1,0
30 NEXT

Here’s how you do it in symbolic machine language by using the X or Y index
register. NOTE: Don’t worry if you don’t understand all of the following instructions. They
are discussed fully in the TYPES OF INSTRUCTIONS section, later in this chapter.

LDA #%00 Load the Accumulator with 0

TAX Transfer the contents of Accumulator (0) to X
Register.
START STA $0400,X Store contents of Accumulator in address $0400 + X
INX Increment the X register

CPX #%0B Compare the X register with $0B (11 decimal)
BNE START If X register does not equal 11 branch to START.
BRK Stop

* = In the machine-language monitor the symbolic label START is not allowed, so it
would appear as an absolute address reference (eg; $183B).

The BASIC example above places a 0 in locations (addresses) 1024 through 1034.
Line 10 sets up a loop from memory locations 1024 to 1034. Line 20 POKESs the value 0
into the location specified by I. The first time through the loop, I equals 1024. The
second time through the loop, I equals 1025 and so on. Line 30 increments the index
variable I by I each time it is encountered.

The previous machine-language example accomplishes the same task as the BA-
SIC example. LDA #8300 loads a 0 into the accumulator. TAX transfers the contents of
the accumulator into the X-index register. The following machine-language instructions
form a loop:

START STA $0400,X
INX
CPX #30B
BNE START

Here’s what happens within the loop. STA $0400.X stores a 0 in location $0400
(hex) the first time through the loop. Location $0400 is location 1024 decimal. INX
increments the X register by 1, each cycle through the loop. CPX #30B compares the
contents of the X register with the constant 11 ($0B). If the contents of the X register do
not equal 11, the program branches back to START STA $0400,X and the loop is
repeated.

The second time through the loop, 0 is stored in address $0401 (1025 decimal) and
the X register is incremented again. The program continues to branch until the contents
of the X register equal 11.

* The effective address for the first cycle through the loop is $0400 which is 1024
decimal. For the second cycle through the loop the effective address is $0400 + 1, and
so on. Now you can see how the index registers modify the address within machine-
language instruction.

THE STATUS REGISTER

The microprocessor’s status register indicates the status of certain conditions within the
8502. The status register is controlled by seven programming states of the microproces-
sor, and indicates the conditions with flags. The status register is one byte, so each flag
is represented by a single bit. Bit 5 is not implemented.

Branching instructions check (4 of the 7 bits in) the status register to determine
whether a condition has occurred. The conditions for branching pertain to the value of
the bits in the status register. If a condition is true, meaning the FLAG bit corresponding
to one of the four conditions is high (equal to a 1), the computer branches. If the
condition you are testing is not true, the computer does not branch and the program
resumes with the instruction immediately following the branch.

Figure 5-2 shows the layout of the 8502 status register and lists the conditions
the status register flags.

MACHINE LANGUAGE ON THE COMMODORE 128

131

7N v] [a}u[n[z[% PROCESSOR STATUS REG “P"

CARRY t = TRUE

i ZERO 1 = RESULT ZERO
L IRQ DISABLE 1 = DISABLE
t——————p» DECIMAL MODE 1 = TRUE
5 BRK COMMAND
#= OVERFLOW 1 = TRUE
P~ NEGATIVE 1 = NEG

Figure 5-2. 8502 Status Register

The Carry bit (0) is set if an addition operation carries a bit into the next position
to the left of the leftmost bit. The Carry bit is set by other conditions, of which this is
one. The SEC instruction sets the Carry bit. CLear the Carry bit with the CLC
instruction.

The Zero bit (1) is set if the result of an operation equals zero. The command BEQ
stands for Branch on result EQual to Zero. The command BNE stands for Branch on
Result Not Equal to zero. If the zero bit in the status register is set, the program
branches to the address relative to the current program counter value (for a BEQ
instruction). Otherwise, the BEQ command is skipped and the program resumes with the
instruction immediately following the BEQ statement.

The IRQ Disabled bit (2) is set if your program requests interrupts to be dis-
abled with the SEI command (Set Interrupt Disable Status). The Disable Interrupt
Status bit is cleared with the CLI command (CLear Interrupt Disable bit) to permit
interrupts to occur. You will learn more about programming interrupts in the section
entitled TYPES OF INSTRUCTIONS and in the Raster Interrupt program explanation in
Chapter 8.

The microprocessor sets the Decimal Mode bit (3) if you instruct the microproces-
sor to SEt Decimal Mode with the SED instruction. CLear the Decimal Mode bit with
the CLD instruction, CLear Decimal Mode.

The BRK flag (bit 4) operates similar to the IRQ disable flag. If a BRK instruction
occurs, it is set to 1. Like an IRQ interrupt, the BRK causes the contents of the
program counter to be pushed onto the stack. The contents of the status register is
pushed on top of the stack and evaluated. If the BRK flag is set, the operating system
or your application program must evaluate whether or not a BRK or interrupt has
occurred.

If the BRK flag is cleared once the status register is pushed onto the stack, the
processor handles this as an interrupt and services it. Unlike an interrupt, the BRK flag
causes the address of the program counter plus two to be saved. The microprocessor
expects this to be the address of the next instruction to be executed. You may have to

adjust this address since it may not be the actual address of the next instruction within
your program.

The Overflow flag (bit 6) is set by a signed operation overflowing into the sign
bit (bit 7) of the status register. You can clear the Overflow bit in the status register with
the CLV instruction (CLear Overflow flag). You can conditionally branch if the
Overflow bit is set with the BVS (Branch Overflow Set) instruction. Similarly, you can
conditionally branch if the overflow bit is clear with the BVC (Branch Overflow Clear)
instruction. The BIT instruction can be used to intentionally set the overflow flag.

The microprocessor sets the negative flag (bit 7) if the result of an arithmetic
operation is less than 0. You can conditionally branch if the result of an arithmetic
operation is negative, using the BMI instruction, (Branch on result MInus) or positive
using the BPL instruction, (Branch on Result Positive).

The status register indicates seven important conditions within the microprocessor
while your machine language program is executing. Your program can test for certain
conditions, and act upon the results. It gives you a way to conditionally control certain
machine level functions depending on the value of the status flags.

THE PROGRAM COUNTER

So far all of the registers within the 8502 are 8 bits, or one byte. The program counter
is twice as wide (16 bits) as the accumulator, X or Y registers or the status register. The
program counter is a 16-bit register because it holds the current address of the next
instruction to be executed. The addresses used in an 8502-based microprocessor are all 16
bits wide. They have to be in order to address all locations within each 64K RAM
bank.

The program counter holds the address of the next instruction to be executed. It
fetches the addresses of the instructions sequentially (usually) and places them on the
16-bit address bus. The processor obtains the data or instructions at the specified 16-bit
address from the data bus. Then they are decoded and executed.

THE STACK POINTER

Within the RAM of the Commodore 128 is a temporary work area called the stack. It
starts at location decimal 256 and ends at location 511 (hex $100 to $1FF). This area of
computer RAM is referred to as page 1. Paging is explained in the next section.

The stack is used for three purposes in your computer: temporary storage, control
of subroutines, and interrupts. The stack is a LIFO (Last In, First Out) structure which
means the last value placed on the stack is the first one taken off. When you place a
value on the stack, it is referred to as pushing. When you take a value off the stack, it is
considered pulling or popping.

Think of the structure as a stack of lunch trays in a cafeteria. The first tray used is
the one that is pulled off the top. The last one used is the one on the bottom, and it is
used only if all the others are pulled off before it.

The stack pointer is the address of the top stack value (plus 1). When a value
is pulled from the stack, the stack pointer then indicates the new address of the
next item on the stack. When a subroutine is called or an interrupt occurs, the

MACHINE LANGUAGE ON THE COMMODORE 128

133

address where the interrupt or subroutine occurs is pushed on top of the stack. Once
the interrupt or subroutine is serviced, the address where it occurred is popped off
the stack and the computer continues where it left off when the interrupt or subroutine
occurred.

16-BIT ADDRESSING:
THE CONCEPT OF PAGING

The Commodore 128 contains 128K of Random Access Memory (RAM). This means
you have two banks of 65536 (64K) RAM memory locations (minus two for locations 0
and I, which are always present in a RAM bank). Since the 8502 is an 8-bit micropro-
cessor, it needs two 8-bit bytes to represent any number between O and 65535. One
eight-bit byte can only represent numbers between 0 and 255. Your computer needs a
way to represent numbers as large as 65535 in order to address all the memory
locations.

Here’s how your computer represents the largest number in one 8-bit byte. The
computer stores it as a binary number. You usually represent it as a hexadecimal number
in your machine-language programs. Figure 5-3 shows the relationship between binary,
hexadecimal and decimal numbers.

BINARY HEXADECIMAL DECIMAL

leight-bitByte = 11111111 $FF 255

Figure 5-3. Comparison of Number Systems

A byte contains eight binary digits (bits). Each bit can have a value of O or 1. The
largest number your computer can represent in eight binary digitsis 1 1 111111,
which equals 255 in decimal. This means all eight bits are set, or equal to 1. A
bit is considered off if it is equal to 0. In converting binary to decimal, all the binary
digits that are set are equal to 2 raised to the power of the bit position. The bit
positions are labeled O through 7 from right to left. Figure 54 provides a visual
representation of converting binary to decimal.

27 26 2* 24 23 2? 2! 20

One binary byte = 1 1 1 1 1 1 1 1
The byte in decimal = 128 + 64 + 32 + 16 + 8 + 4 + 2 + 1 = 255

Figure 5-4. Binary/Decimal Conversion

The top of each column represents the value of 2 raised to the power of the bit
position. Since each bit is turned on when you represent the largest number in one byte,
add all the values at the bottom of each to obtain the decimal equivalent. Figure 5-5
shows another example that converts the binary number 1 10010 1 0 to decimal.

27 26 2° 24 23 2? 2! 20

One binary byte = 1 1 0 0 1 0 1 0
The byte in decimal = 128 + 64 + 0 + 0 + 8 + 0 + 2 + 0 = 202

Figure 5-5. Binary/Decimal Conversion

Remember, only add the values of two raised to the bit position if the bit is set.
If a bit is off, it equals zero.

Now that you can convert one byte from binary to decimal, you are probably
wonderirig what this has to do with 16-bit addressing. We mentioned before that the
program counter—the register responsible for storing the address of the next instruction
to be executed—is 16 bits wide. This means it uses two bytes side-by-side to calculate
the address.

You just learned about the low byte, the lower half of the 16 bits used to represent
an address. The upper half of the 16-bit address is called the high byte. The high byte
calculates the upper half of the address the same way as the low byte, except the bit
position numbers are labeled from 8§ on the right to 15 on the left. When you raise 2 to
the power of these bit positions, and add the resulting values to the low byte of the
address, you arrive at addresses that go up to 65535. This allows your computer
to represent any number between O and 65535, and address any memory location
within each 64K RAM bank. Figure 5-6 is an illustration of a 16-bit address in
decimal:

High Byte 215 2 B i it i Y 2°

One binary byte= 1 1 1 1 1 1 1 1

The byte in

decimal =32768 + 16384 + 8192 + 4096 + 2048 + 1024 + 512 + 256=65280
Low Byte 2 2600 25 2¢ 22 22 2 20

One binary byte= 1 1 1 1 1 1 1 1

The byte in
decimal =128+ 64 + 32 + 16 + 8§ + 4 + 2 + 1 = 255-255
65535

Figure 5-6. Example of 16-Bit Address in Decimal

MACHINE LANGUAGE ON THE COMMODORE 128

135

You can see that the highest number of the high byte of the 16-bit address is
65280. And you know that the highest number of the low byte of the 16-bit address
equals 255. Add the highest high-byte and the highest low-byte number (65280 + 255),
to arrive at 65535, the highest address within each of the two 64K RAM banks.

When the microprocessor calculates the address of the next instruction, it looks at
the high byte of the 16-bit program counter. Try to think of the high byte of the address
as just another 8-bit byte. If this was the case, the bit positions would be labeled from O
on the right through 7 on the left, just like the low byte of the address. Therefore, the
largest number this 8-bit byte can represent again is 255 decimal.

The value in the high byte determines which 256-byte block is accessed. These
256-byte blocks are referred to as pages. The high byte determines the page boundary of
the address, so the high byte is calculated in increments of 256 bytes. The high byte of
the program counter determines which of the possible 256 pages is being addressed. If
you multiply the number of possible pages, 255 by 256 bytes. you realize the highest
page starts at location 65280, decimal, the same number as in the high byte in Figure
5-6. Location 65280 is the highest page boundary addressable.

What if you want to address a memory location that does not lie on a page
boundary? That’s where the low byte of the 16-bit address comes in.

The high byte of the program counter represents the 256-byte page boundary.
All addresses between boundaries are represented by the low byte. For example, to
address location 65380 decimal represent the high byte as 255, since 255 times
256 equals 65280. You still have to move 100 addresses higher in memory to location
65380.

The low byte contains the value 100 decimal. The low byte value is added to the
high byte to find the actual, or effective address.

When you look at the memory map of your Commodore 128, you will see
references to the low byte and high byte pointers or vectors to certain machine-language
routines within the operating system or to important system memory locations, like the
start of BASIC.

You can find out the contents of these addresses and where the routines reside in
your Commodore 128’s memory by using the PEEK command in BASIC, or the
Memory command in the Machine Language Monitor. To find the effective address
using BASIC, look in the memory map for the reference to a specific routine or system
function, sometimes called a vector. PEEK the high byte, the page number of the
routine. Multiply by 256 to find the page boundary. Then PEEK the low byte and add it
to the page boundary to arrive at the effective decimal address.

Keep in mind that all the address calculations are performed in binary. They are
explained in decimal so they’re easier to understand. In your machine language pro-
grams, you will usually reference memory in hexadecimal notation, explained in the
next section.

HEXADECIMAL NOTATION

Your 8502 microprocessor only understands the binary digits 0 and 1. Although machine
language usually requires hexadecimal notation and BASIC processes decimal numbers,
those numbers are translated and processed as binary numbers. Your computer uses
three different number systems, binary (base 2), hexadecimal (base 16) and decimal
(base 10). The machine-language monitor also uses the octal number base. A number
base is also referred to as a radix; therefore, the C128 uses four radices, but the
microprocessor only understands binary at machine level.

BASIC understands decimal numbers because they are easiest for people to use.
Although BASIC doesn’t process as fast as machine language, the ease of use makes up
for the loss of speed.

Machine language uses hexadecimal notation because it is closer to the binary
number system and easier to translate than decimal. Hexadecimal representation is also
used usually by machine-level programmers because it is easier for people to think of a
group of eight binary digits (a whole byte) than it is to think of them as separate digits
by themselves. How do you find it easier to represent this value:

3A (hexadecimal), or as 00111010 (binary)?

Once values are translated from the higher level language into a form that the
microprocessor can understand (binary digits or bits), they are interpreted as electronic
switches by the internal circuitry. The switches determine if an electronic impulse will
be transmitted by the integrated circuit (I.C.) to perform a specific function, such as
addressing a memory location. If the bit equals 1, the switch is interpreted as on, which
sends a voltage level (approximately 3 to 5 volts) through the 1.C. If the binary digit is
equal to 0, no voltage is transmitted. Though this is a simplified illustration, you get an
idea of how the microcomputer system can translate, process and perform the instruc-
tions you give to your computer. The hardware and software merge here, at machine
level.

UNDERSTANDING HEXADECIMAL
(HEX) NOTATION

The key behind understanding hexadecimal (base 16) numbers is to forget about decimal
(base 10). Hexadecimal digits are labeled from O through 9 and continuing with A
through F, where F equals 15 in decimal. By convention, hexadecimal numbers are
written with a dollar sign preceding the value so that they can be distinguished from
decimal values. Figure 5-7 provides a table of the hexadecimal digits and their decimal
and binary equivalents:

MACHINE LANGUAGE ON THE COMMODORE 128

137

HEXADECIMAL DECIMAL BINARY
$0 0 0000
$1 1 0001
$2 2 0010
$3 3 0011
$4 4 0100
$5 5 0101
$6 6 0110
$7 7 0111
$8 8 1000
$9 9 1001
$A 10 1010
$B 11 1011
$C 12 1100
$D 13 1101
$E 14 1110
$F 15 1111

Figure 5-7. Hexadecimal/Decimal/Binary Conversion

Each hex digit represents four bits. The highest number you can represent with
four bits is 15 decimal. In machine language, you usually represent operands and
addresses as two or four hex digits. Since each hex digit of a four-digit hexadecimal
address takes up four bits, four of them represent 16 bits for addressing.

At first you’ll find yourself converting decimal addresses and operands into
hexadecimal. Then you’ll want to convert the other way. See the HEX$ and DEC
functions for quick and easy decimal to HEX conversions. In the machine language
monitor, use the (+) plus sign to represent decimal numbers. Use the conversions for
now, but eventually you should find yourself thinking hexadecimal notation instead of
always converting from decimal to hexadecimal.

ADDRESSING MODES IN
THE COMMODORE 128

Addressing is the process by which the microprocessor references memory. The 8502
microprocessor has many ways to address the internal locations in memory. The
different addressing modes require either one, two or three bytes of storage depending
on the instruction. Each instruction has a different version and op-code. For example,
LDA (LoaD the Accumulator) has eight versions, each with a different op-code to
specify the various addressing modes. See the 8502 Instruction and Addressing Table
section for the different versions of all the 8502 machine-language instructions.

ACCUMULATOR ADDRESSING

Accumulator addressing implies that the specified operation code operates on the
accumulator. The operand field is omitted since the instruction can only perform the
operation on the accumulator. Accumulator instructions require only one byte of stor-
age. Here are some examples of accumulator addressing instructions:

INSTRUCTION HEX OPCODE MEANING
ASL $0A Shift one bit left
LSR $4A Shift one bit right
ROR $6A Rotate one bit right

IMMEDIATE ADDRESSING

Immediate addressing specifies that the operand be a constant value rather than the
contents of a particular address. The operand is the data, not a pointer to the data. At
machine level, the microprocessor actually interprets an operand field constant
and an address in the operand field as two different op-codes, so the pound sign gives
the programmer a way to distinguish between the data and a pointer to the data.
Immediate addressing instructions require two bytes of storage. Here are some immedi-
ate addressing instruction examples:

INSTRUCTION HEX OPCODE MEANING

LDA #$0F $A9 Load the accumulator with 15 ($0F)
CMP #S$FF $C9 Compare the accumulator with 255 ($FF)
SBC #$E0 $E9 Subtract 224 ($E0) from accumulator

ABSOLUTE ADDRESSING

Absolute addressing allows you to access any of the memory locations within either 64K
RAM bank. Absolute addressing requires three bytes of storage; the first byte for the
op-code, the second for the low byte of the address and the third for the high byte. Here
are some examples of absolute addressing instructions:

MACHINE LANGUAGE ON THE COMMODORE 128

139

INSTRUCTION HEX OPCODE MEANING

INC $4FFC $EE Increment the contents of address $4FFC by 1

LDX $200C $AE Load the X register with the contents of address
$200C

JSR $FFC3 $20 Jump to location $FFC3 and save the return address

ZERO-PAGE ADDRESSING

Zero-page addressing requires two bytes of storage; the first byte is used for the opcode
and the second for the zero-page address. Since zero page ranges from addresses 0
through 255, the computer only needs the low byte to represent the actual address. The
high byte is assumed to be 0; therefore, it is not specified. When addressing a zero-page
location, you can still use absolute addressing; however, the execution time is not as fast
as zero-page addressing. Here are some examples:

INSTRUCTION HEX OPCODE MEANING

LDA $FF $A5 Load the accumulator with the contents of zero-page
location $FF (255)

ORA $E4 $05 OR the accumulator with the contents of location
$E4

ROR $0F $66 Rotate the contents of location $0F one bit to the

right

IMPLIED ADDRESSING

In implied addressing mode, no operand is specified because the op-code suggests the
action to be taken. Since no address or operand is specified, an implied instruction
requires only one byte for the op-code. Some examples are:

INSTRUCTION HEX OPCODE MEANING

DEX $CA Decrement the contents of the X register
INY $C8 Increment the contents of the Y register
RTS $60 Return from Subroutine

RELATIVE ADDRESSING

Relative addressing is used exclusively with branch instructions. The branch instructions
(BEQ, BNE, BCC, etc.) allow you to alter the execution path depending on a particular
condition. Branch instructions are similar to [F . . . THEN statements in BASIC since
they both conditionally perform a specified set of instructions.

The operand in the branch instruction determines the destination of the conditional
branch. For example, the op-code BEQ stands for Branch on result EQual to zero. If the
zero flag in the status register is equal to 1 add the operand to the program counter and
continue execution at this new address. Figure 5-8 provides an example in symbolic
assembly language.

LDA #$01 .01800 A9 01 LDA #3%01
STA TEMP .01802 85 FA STA $FA
DEC TEMP .01804 C6 FA DEC $FA
START BEQ START .01806 FO FC BEQ $1804
LDX #$01 01808 A2 01 LDX #$01
STA COUNT .0180A 85 FB STA $FB
(A) (B) (©)

*NOTE: The machine language monitor does not provide for
symbolic addresses and labels like TEMP and START.

Figure 5-8. Relative Addressing

Figure 5-8 lists the (A) code on the left as it appears in symbolic assembly
language. The code (B) in the middle is the actual machine-level machine code
as it appears in the machine language monitor. The (C) code to the right is the symbolic
machine language as it appears in the monitor as executable code.

In this program segment, the first instruction LoaDs the Accumulator with [.
STA is the op-code for STore the contents of the Accumulator in the variable
TEMP. The third instruction, DEC, decrements the contents of the variable TEMP. In
the third instruction, START is a label which marks the beginning of the conditional
loop. The branch instruction (BEQ) checks to see if the value stored in TEMP equals
0 as a result of the DECrement instruction. The instruction marks the end of the
loop.

The first time through this loop, the result in TEMP equals 0 so program control
branches back to the instruction specified by the label START.

The second time through the loop, TEMP is less than zero; therefore, the zero
flag in the status register is cleared, the program does not branch to START and
continues with the statement directly following the branch instruction (LDX #3$01).

MACHINE LANGUAGE ON THE COMMODORE 128

141

Because of the way this program segment is written, a branch can occur only once, the
first time through the loop.

Under relative addressing, the first byte of the instruction is the op-code and the
second is the operand, representing an offset of a number of memory locations. The
location to branch back to is not interpreted as an absolute address but an offset relative to
the location of the branch instruction in memory.

The offset ranges from —128 through 127. If the condition of the branch is met,
the offset is added to the program counter and the program branches to the address in
memory.

In the example in Figure 5-8, notice that the operand in the branch instruction is
only one instruction past the label START. The operand START is interpreted by the
computer as an offset of three bytes backward in memory since the DEC instruction use
2 bytes and the BEQ op-code uses one byte. The 8502 can only branch forward 127
bytes and branch backward by 128 bytes.

If you enter the machine-language monitor and disassemble the machine-language
code, you’ll see how the computer represents a branch instruction operand as in part (B)
of Figure 5-8. The symbolic code in part (C) operand field represents the operands as
absolute addresses but the assembled hexadecimal code to the left in part (B) of the op
code stores the operand using one byte, a number plus or minus the address of the
branch instruction. The largest number for a forward branch is $7F. A backward branch
is represented by hex numbers greater than $80. When you are within the machine-
language monitor, subtract the operand offset from 255 ($FF) to find the actual value of
the negative offset. In this case $FF minus 3 equals $FC, which is the operand in the
branch instruction in part (B) of Figure 5-8.

Here are some examples of relative addressing branch instructions:

INSTRUCTION HEX OP-CODE MEANING

BEQ $F0 Branch on result Equal to 0
BNE $DO Branch on result Not Equal to 0
BCC $90 Branch on Carry Clear

INDEXED ADDRESSING MODES

The Commodore 128 has two special-purpose registers: the X and Y index registers.
In indexing addressing modes, index registers modify an address by adding their
contents to a base address to arrive at the actual or effective address. For example,
here’s a program segment that illustrates the importance of address modification, using
the X and Y index registers:

LDA #S0F

LDX #300
LOOP STA $2000,X

INX

BNE LOOP

The first instruction in this program loads the accumulator with $0F(15 decimal).
The second instruction loads the X register with 0. The third instruction stores the
contents of the accumulator into the address $2000 added to the contents of the X index
register. The first time the loop cycles, $OF is stored in address $2000 ($2000 + 0 =
$2000). The next instruction (INX) increments the contents of the X register. The last
instruction in the loop branches to the statement specified by the label LOOP, which is
the STA $2000, X instruction. The second time through the loop, $0F is stored in
location $2001 ($2000 + 1). The third cycle of the loop stores $OF in location $2002, etc.

The loop continues to cycle and stores $OF in consecutive locations until the X
register equals 0. In other words, the loop circulates 256 times until the X register
equals 0, since 255 plus | is represented as 0. This is because the extra bit is carried
over to the ninth bit position, which doesn’t exist in an eight-bit number, so the register
is reset to zero. This is similar to when your car odometer is set at 99,999 miles. When
you travel another mile the dial resets to 00,000.

This example shows just one way to modify addresses with the index registers.
The Commodore 128 has four indexed addressing modes: (1) indexed absolute address-
ing (illustrated in the example just shown), (2) indexed zero-page addressing, (3)
indexed indirect addressing, and (4) indirect indexed addressing.

INDEXED ZERO-PAGE ADDRESSING

This type of addressing is similar to zero-page addressing except that the index registers
(X or Y) are used to modify addresses within page zero ($00 to $FF) of memory. Since
zero-page addressing requires no high byte to represent the page number, this type of
instruction requires only two bytes of memory. The effective (actual) address is calcu-
lated by adding the contents of the index register to the low byte of the address in the
program counter. This addressing mode is faster and more efficient than using indexed
absolute addressing in zero page.

Here are some examples of indexed zero-page addressing instructions:

INSTRUCTION HEX OP-CODE MEANING

INC operand, X $F6 Increment the contents of memory by 1.
The base address (the operand) is added to the
contents of the index register (X)).

CMP operand, X $D5 Compare the contents of the accumulator with
memory. The memory base address (the oper-
and) is added to the contents of the index register

(X))

MACHINE LANGUAGE ON THE COMMODORE 128

143

INDEXED ABSOLUTE ADDRESSING

Indexed absolute addressing allows you to access and modify any of the memory
locations in each of the two 64K banks. The effective address is calculated by adding
the contents of the index register (X or Y) to the high and low byte base address
determined by the operand. Since absolute addressing can access any of the available
memory locations, high and low bytes are required to form the 16-bit address. There-
fore, this type of addressing requires three bytes.

Here are some examples of indexed absolute addressing instructions:

INSTRUCTION HEX OP-CODE MEANING

AND operand,Y $39 Perform the logical AND operation on the
accumulator and the contents of memory base
address plus the contents of the register (Y).

ASL operand,X $1E Shift the contents of the memory (the memory
is the base address (the operand) added to the
contents of the index register (X)) one bit to the
left.

THE INDIRECT ADDRESSING CONCEPT

So far you’'ve learned that the computer calculates the effective address as the
base address (in the program counter) plus the offset from the contents of the index
registers if indexed addressing is used. Indirect addressing calculates the effective
address differently.

Think of indirect addressing as the address of an address. Here’s an illustration
using absolute indirect addressing:

JMP (50326)

The above JuMP instruction is an example of absolute indirect addressing. This
type of instruction requires three bytes: one for the op-code, one for the low byte and
one byte for the high byte of the 16-bit address. The parentheses indicate that indirect
addressing is used. The second and third bytes of the JMP instruction specify the low and
high byte of the address. The address in the operand field is only the low byte of the effective
address. The contents of the byte immediately following the address specified in the JMP
instruction is automatically placed into the program counter as the high byte of the effective
address. In this example, the contents of location $0326 and $0327 represent the address of
the actual instructions to be executed. For example, location $0326, the low byte of
the effective address, contains the value $65 and location $0327, the high byte of the
effective address, contains the value $F2. The high- and low-byte values are placed in

the program counter as the address $F265, the actual address of the next instruction
the computer executes then is $F265.

If the parentheses were not present, the assembler interprets the instruction
as an absolute addressing instruction. The computer would understand the low
byte to be $26 and the high byte to be $03 and would JuMP to the instruction
located at $0326 instead of the intended address of $F265. Since this is not the
case, the high byte is automatically presumed to be the low byte address plus |
(the contents of $0327).

The last two addressing modes, indirect indexed and indexed indirect, use the
same principle as absolute indirect addressing. Here's an explanation of each.

INDEXED INDIRECT ADDRESSING

Indexed indirect addressing is similar to absolute indirect, although it uses index
registers to modity an address. This type of addressing, sometimes called indirect X
addressing, requires two bytes of storage: the first byte is for the op-code and the second
is for the operand which is used in the effective address calculation. The address
specified in the second byte is added to the contents of the X register and the carry, if
any, is ignored. The results point to an address in page zero in which its contents
contain the low byte of the effective address. The zero page address plus | indicates the
high byte of the effective address. Both locations in which the low and high bytes of the
effective address are contained must be located in page zero, locations $00 through $FF.
Here’s an example:

LDX #3504
LDA #5300
STA ($DF.X)

The first line loads the X register with $04. Next, the accumulator is loaded with
0. The third instruction stores zero in the effective address. Calculate the effective
address by taking the base address SDF (not the contents of it) and add the contents of
the X register ($04) to it, which equals $E3. The contents of location $E3 is the low
byte of the effective address and the contents of $E4 is the high byte of the effective
address. For example, the contents of address $E3 contain $56 and the contents of
address $E4 contain $F3. Since the contents of $E3 is the low byte and the contents of
$E4 is the high byte, the effective address is $F356. Indexed indirect addressing is
referred to as pre-indexing because the indexing occurs before the effective address is
actually obtained. Indirect X addressing is useful in addressing a series of pointers such
as the zero-page memory of the Commodore 128.

INDIRECT INDEXED ADDRESSING
This mode, also called indirect Y addressing, is post-indexed, which means the adding
of the index itself obtains the effective address. This mode operates on the principle of a
base address and a displacement. Here’s how it works.

The first of two bytes is the op-code, the second is the operand, a pointer to a

MACHINE LANGUAGE ON THE COMMODORE 128

145

zero-page memory address. The contents of the pointer and the contents of the Y
register are added to arrive at the low byte of the effective address. The contents of the
pointer act as the base address and the contents of the Y register act as the displacement.
The carry, if any, is added to the memory location directly following the low-byte
address which becomes the high byte of the effective address. This is true indexing,
designed specifically for manipulating tables of data. In order to access different table
values, just change the contents of the Y register since the base address is already
established. Here’s an example:

LDY #3508
LDA #300
STA ($EA)Y

The first instruction loads the Y register with $08. The second instruction loads
the accumulator with 0. The third instruction stores the contents of the accumulator in
the effective address.

To find the effective address, add the contents of the zero page memory location
(base address) specified in the instruction to the contents of the Y register (displace-
ment). In this example, the contents of the address SEA equals $FO. Add SFO to the
contents of the Y register ($08) to arrive at SF8, the low byte of the effective address of
the next instruction. The high byte of the effective address is obtained by adding the
carry (none in this case) to the zero-page memory location immediately following the
low-byte address. For example, location $F9 contains the value $3F. Since the low byte
is $F8 and the high byte equals $3F, the effective address is $3FF§.

Notice the difference between indirect indexed and indexed indirect addressing
modes as they can be confusing. Remember, the most important difference between the
two addressing modes is the way the effective address is calculated. Indexed indirect is
X indexing, which is indexed prior to the arrival of the effective address. Indirect
indexed is post-indexed with the Y register.

You have just covered all the addressing modes in the Commodore 128. Each calls
for different circumstances and you should use the correct mode whenever circum-
stances dictate it to obtain optimal performance from the microprocessor. For example,
use indexed zero-page addressing when you are manipulating zero-page locations in-
stead of using indexed absolute.

TYPES OF INSTRUCTIONS

This section explains all the types of machine-language instructions available in the
Commodore 128. They are first covered by type of instruction, such as REGISTER TO
MEMORY and COMPARE instructions; then they are listed alphabetically by op-code
mnemonic with all the different addressing options. This section provides important
information on programming in machine language on the Commodore 128 (or any
6502-based microcomputer).

Use this information as a reference for background on each instruction. Figure 5-9
provides an alphabetized list of the 8502 microprocessor op-code mnemonics. For
detailed, quick-reference information, see the following section for an alphabetic list of
instructions, their hexadecimal op-codes, the different versions of the instructions for
each addressing mode and the way they affect the flags in the status register.

8502 MICROPROCESSOR INSTRUCTION SET-—
ALPHABETIC SEQUENCE

ADC Add Memory to Accumulator with Carry
AND ““AND”’ Memory with Accumulator
ASL Shift Left One Bit (Memory or Accumulator)

BCC Branch on Carry Clear

BCS Branch on Carry Set

BEQ Branch on Result Zero

BIT Test Bits in Memory with Accumulator
BMI Branch on Result Minus

BNE Branch on Result not Zero

BPL Branch on Result Plus

BRK Force Break

BVC Branch on Overflow Clear

BVS Branch on Overflow Set

CLC Clear Carry Flag

CLD Clear Decimal Mode

CLI Clear Interrupt Disable Bit

CLV Clear Overflow Flag

CMP Compare Memory and Accumulator
CPX Compare Memory and Index X
CPY Compare Memory and Index Y

DEC Decrement Memory by One
DEX Decrement Index X by One
DEY Decrement Index Y by One

EOR ‘Exclusive-Or’” Memory with Accumulator

INC Increment Memory by One
INX Increment Index X by One
INY Increment Index Y by One

JMP Jump to New Location
JSR Jump to New Location Saving Return Address

LDA Load Accumulator with Memory

LDX Load Index X with Memory

LDY Load Index Y with Memory

LSR Shift Right One Bit (Memory or Accumulator)

NOP No Operation

MACHINE LANGUAGE ON THE COMMODORE 128

147

8502 MICROPROCESSOR INSTRUCTION SET—
ALPHABETIC SEQUENCE (cont’d)

ORA *“OR” Memory with Accumulator

PHA Push Accumulator on Stack
PHP Push Processor Status on Stack
PLA Pull Accumulator from Stack
PLP Pull Processor Status from Stack

ROL Rotate One Bit Left (Memory or Accumulator)
ROR Rotate One Bit Right (Memory or Accumulator)

RTI Return from Interrupt
RTS Return from Subroutine
SBC Subtract Memory from Accumulator with Borrow

SEC Set Carry Flag

SED Set Decimal Mode

SEI Set Interrupt Disable Status
STA Store Accumulator in Memory
STX Store Index X in Memory
STY Store Index Y in Memory

TAX Transfer Accumulator to Index X
TAY Transfer Accumulator to Index Y
TSX Transfer Stack Pointer to Index X
TXA Transfer Index X to Accumulator
TXS Transfer Index X to Stack Pointer
TYA Transfer Index Y to Accumulator

Figure 5-9. 8502 Op-Code Mnemonics

REGISTER TO MEMORY
INSTRUCTIONS

The REGISTER TO MEMORY instructions are:

LDA STA
LDX STX
LDY STY

The register to memory instructions either place a value into the accumulator, X
register or Y register from memory, or store a value from a register (A, X, or Y) into a
memory address.

LOADING THE ACCUMULATOR

The first and most common instruction is LDA, LoaD the Accumulator. This places a value
into the accumulator, the most powerful and active register in the microprocessor. The
value is derived from the contents of a memory location or a constant. Here’s an example:

LDA $2000

This instruction loads the contents of the memory location $2000 (8192 decimal)
into the accumulator. The value in the memory location $2000 remains the same. The
value also remains in the accumulator until another value is placed there or another
operation acts upon it.

The previous example is just one of the addressing modes for loading the accumu-
lator. Another form the LDA instruction can take is to load a constant. To load a
constant into the accumulator, you must precede the dollar sign ($) with a pound sign
(#). For readability. it’s a good idea to place at least one space between the op-code and
the operand but it is not necessary. Here’s an example of loading a constant into the
accumulator:

LDA #30A

This loads the constant $0A (10 decimal) into the accumulator. Remember,
precede a constant with a pound sign, or else the assembler interprets the instruction as
the contents of a memory address.

The LDX and LDY instructions work the same way as the LDA instruction.
Again, vou can load a constant or the contents of a memory address into the X and Y
registers. Examples:

LDX #$0A
LDX $2000
LDX #S$FB

STORE: THE OPPOSITE OF LOAD

You know how to place a value into a register, but how do you do the opposite? The
STORE instruction performs the opposite of a load. It places a value from the A
(accumulator), X, or Y registers into a specified memory address. As you learned in the
addressing section, the load, store and most other machine-language instructions have
several versions, depending on the type of addressing used. Here’s an example:

STA $FC3E

This stores the contents of the accumulator into memory location $SFC3E. The
contents of the accumulator remain the same until another instruction modifies it. The
STX and STY instructions work the same way; they store the contents of the register
into a specified memory address. There is no immediate version or pound sign version
of the store command.

COUNTER INSTRUCTIONS
The COUNTER instructions are

INC DEC
INX DEX
INY DEY

Counter instructions can be used to keep track of or count the number of times an
event occurs. These instructions are used for mathematical manipulations or indexing a

MACHINE LANGUAGE ON THE COMMODORE 128

149

series of addresses. The counter instruction, INC, increments the contents of a memory
address by a value of | each time it is encountered. These instructions are used primarily
within a program loop and in conjunction with a branch instruction. Here’s an example
of a loop and how INC keeps track of a number of occurrences of an event:

LDX #8300
TXA

START STA $2000,X
INX
BNE START

The first instruction loads a O into the X register. The second instruction transfers
the contents of the X register into the accumulator (without erasing the X register).
Instruction three stores the contents of the accumulator (0) into location $2000 the first
time through the loop. The fourth instruction increments the contents of the X register.
The last instruction branches to the instruction specified by the label START, until the
value of the X register equals 0.

This program segment stores 0’s in an entire page (256 locations) starting at $2000
and ending at $20FF. When the contents of the X register equals 255 and it is
incremented again, it is reset to 0, since it can only hold an eight-bit number. When this
occurs, the branch is skipped and the program continues with the instruction directly
following the branch instruction.

The INY instruction operates in the same way as INX, since it also only uses
implied addressing. The INC instruction, on the other hand, uses several different
addressing modes including absolute, which uses 16-bit addresses. With the INC
instruction, you can count past the capacity of an 8-bit number, though you must
separate the counter into a high byte and a low byte. For example, the low byte counts
the increments of less than a page and the high byte keeps track of the number of pages.
When low-byte counter is at 255 and is incremented, it is set back to 0. When this
occurs, increment the high-byte counter. To count up to 260 (decimal), the high-
byte value equals 1 and the low byte equals 4. Here’s an equation to illustrate the point:

(1 *256) + 4 = 260
Here’s the machine-language code that does this:

LDA #300
STA HIGH
STA LOW
LOOP INC LOW
BNE LOOP
INC HIGH
LOOP 2 INC LOW
LDA LOW
CMP #304
BNE LOOP2

The DECrement instructions operate the same way as the increment instructions.
They are the negative number counterparts of the increment counters.

COMPARE INSTRUCTIONS

The Commodore [28 has three compare instructions that check the contents of a register
with the contents of memory. A compare operation can be used to determine which
instructions to execute as a result of a conditioned value. The compare instructions are:

CMP
CPX
CPY

The CMP instruction compares the contents of the accumulator with the contents
of the specified address in the instruction. Compare instructions essentially subtract
memory from a register value but change neither—they just set status flags. CPX
compares the contents of the X register with the specified address. CPY compares the
contents of the Y register with the specified memory location.

All three instructions have versions that will operate in immediate, zero-page and
absolute addressing modes. This means you can compare the contents of a register
(A.X, or Y) with the contents of a zero-page location, any other address above zero page,
or against a constant. Here’s an example:

LDX #3$00

LDA #8300
ONE STA $DF.X

INX

CPX #$0A

BNE ONE

The preceding program segment stores 0’s in 10 consecutive memory addresses
starting at $DF. The first instruction loads the X register with 0, the second loads 0 into
the accumulator. The third instruction stores 0 in location $DF plus the contents of the X
register. The fourth instruction increments the X register. The fifth instruction compares
the contents of the X index register with the constant $0A (10 decimal). If the contents
of the X register does not equal $0A, the program segment branches back to the store
instruction specified by the label ONE. After the loop cycles ten times, the X register
and the constant $0A are equal. Therefore the processor does not take the branch
and the program continues with the instruction immediately following BNE.

You can compare the value of a register with the contents of an absolute memory
address. Here’s the same example as above using the contents of a memory address
instead of a constant:

LDA #30A
STA $FB
LDX #800
LDA #3$00
ONE STA $DF.X
INX
CPX $FB
BNE ONE

MACHINE LANGUAGE ON THE COMMODORE 128

151

Remember, if you want to compare numbers larger than eight bits can represent
(greater than 255 decimal), you must separate the number into a low byte and a
high byte.

The BIT instruction can also be used for comparisons. See the logical instructions
next.

ARITHMETIC AND
LOGICAL INSTRUCTIONS

The accumulator is responsible for all mathematical and logical operations performed in
your computer. The mathematical and logical instructions available in machine language are:

ADC EOR
AND ORA
BIT SBC

Here’s what each instruction means:

ADC—Add the contents of the specified memory address to the contents of the
accumulator with a carry. It is considered a good programming practice to clear
the carry bit with the CLC instruction before performing any addition. This avoids
adding the carry into the result.

AND-—Perform the logical AND operation with the contents of the accumulator and the
contents of the specified memory address.

BIT—Compare the bits in the specified memory address with those in the accu-
mulator. Bits 6 and 7 are transferred to the status register flags. Bit 7 is trans-
ferred to the negative status flag bit and bit 6 is sent to the overflow status flag bit.

EOR-—Perform the exclusive OR operation with the contents of the specified memory
address and the contents of the accumulator.

ORA-——Perform the logical OR operation with the contents of the specified memory
address and the contents of the accumulator.

SBC-—Subtract the contents of the specified memory address from the contents of the
accumulator with a borrow. (It is a good practice to set the carry flag before
performing subtraction. This avoids subtracting the borrowed bit from the result.)

ARITHMETIC INSTRUCTIONS
(ADC, SBC)

The addition and subtraction instructions are easy to understand. Here’s an example:

CLC

LDA #30A
STA SFB
ADC #5304
SEC

SBC #3506
ADC $FB
STA SFD

This program segment essentially performs the following mathematical operation:
(10+4)-6+10=18.

The first instruction clears the carry bit. The second instruction loads the accumu-
lator with $0A (10 decimal). The third instruction stores the value in address $FB for
later use. The fourth instruction adds the constant $04 to the value already in the
accumulator. The SBC instruction subtracts the constant $06 from the contents of the
accumulator. The next instruction, ADC $FB, adds the contents of memory location
$FB to the contents of the accumulator. The resulting value (18(512)) of all the
mathematical operations is stored in address $FD.

LOGICAL INSTRUCTIONS

(AND, EOR, AND ORA)

These instructions operate on the contents of a memory address and a register. The AND
operation is a binary (Boolean) algebra operation having two operands that can result in
one of two values, O or 1. The only way an AND operation can result in a 1 is if both
the operands equal I; otherwise the result is 0. For example, the two operands are the
contents of a specified memory address and the contents of the accumulator. Here’s an
illustration of this concept:

Memory address = 10001010
Accumulator 11110010

Result of AND 10000010

As noted, the result of an AND operation is (true) 1, only if the two operands are
equal to 1; otherwise the result is 0. Notice bit 7 (high-order bit) equals 1 because both
bit 7’s in the operands are 1. The only other resulting bit equal to 1 is bit 1, since both bit
1’s are equal to 1. The rest of the bits are equal to zero since no other bit positions in
both operands are equal to 1. A | and a 0 equals 0, as does a 0 and a 0.

The Boolean OR works differently. The general rule is:

If one of the operands equals 1, the resulting Boolean value equals 1.

For example, the two operands are the contents of a specified memory address and
the contents of the accumulator. Each individual bit can be treated as an operand. Here’s
an illustration.

Contents of Memory Address = 10101001
Contents of Accumulator 10000011

10101011

1l

Il

Result of the OR operation

For all the bit positions that equal one in either operand, the resulting value of that
bit position equals 1. The result is [if either operand or both operands are equal to 1.

The exclusive OR works similarly to the OR operation, except if both operands
equal 1, the result is zero. This suggests the following general rule:

MACHINE LANGUAGE ON THE COMMODORE 128 153

I either of the operands equals I, the resulting Boolean value is 1, except if both
operands are 1, then the result equals 0.

Here’s an example using this rule:

Contents of Memory Address = 10101001
Contents of Accumulator = 10000011
Result of the exclusive OR = 00101010

In this example, the operands are the same as in the previous OR example. Notice
bits 0 and 7 are now equal to 0 since both operands are equal to 1. All other bit values
remain the same.

BIT

The BIT instruction performs a logical AND operation on the contents of the specified
memory address and the contents of the accumulator, but the resulting value is not
stored in the accumulator. Instead, the zero flag in the status register is set by the result
of the operation. The BIT instruction compares the contents of the accumulator and the
contents of the memory address, bit-for-bit. If the result of the operation of the
accumulator being ANDed by a memory location is O, then the zero flag (in the status
register) is set to a 1. Otherwise the zero tlag is 0.
Your machine language program can then act conditionally depending on the
result of the zero flag in the status register. In addition, bits 7 and 6 from the specified
memory address are moved into the negative-flag and overflow-tlag bit positions in the
status register, respectively. These flags can also be used to perform conditional
instructions depending on the value of the flag. For example, the BIT instruction
performs the following:

7 0
- NV BDIZC
Contents of Memory Address = 10101001 S
Contents of Accumulator = 11001101 — 10 0
Result of BIT instruction = 10001001 Status Register

(Not stored in accumulator)

Since the resulting bit pattern is not 0, the zero flag in the status register is 0.
In addition, bits 7 and 6 are placed in the bit positions of the negative and overflow
flags, respectively, in the status register. Notice the result of the BIT instruction’s AND
operation is not stored in the accumulator. The original contents of the accumulator
remain intact. See the following example of 2-bit pattern operands that result in 0 when
ANDed:

7 0

NV BDIZC
Contents of Memory Address = 01111010 -
Contents of Accumulator = 10000100 — 01 1
Result of BIT instruction = 00001000 Status Register

This time the bit patterns result in 0. Therefore, the zero flag in the status register
is set to 1. Bits 7 and 6 are also placed into their respective negative and overflow status
register bit positions from their positions in the memory location.

Now you know how each of the arithmetic and logical instructions operate. The
next section discusses branching instructions. Branching instructions are designed so
you can conditionally execute a certain set of instructions, depending on the result of a
condition. Many times the conditions are contingent on the results of an arithmetic or
logical operation, which affects the flags in the status register. The branching instruc-
tions then act according to the flags in the status register.

BRANCHING INSTRUCTIONS

The 8502 microprocessor has many conditional branching instructions. By definition, a
branch temporarily redirects the otherwise sequential execution of program instructions.
It transfers control to a location of a machine-language instruction other than the one
immediately following the branch instruction in memory.

The conditional branch instructions cause the microprocessor to examine a particu-
lar flag in the status register. The processor, depending on the value of the tested flag,
either takes the branch and transfers control of the program to another location or skips
the branch and resumes with the instruction immediately following the branch.

Think of a conditional branch as a test. For example, if the condition passes the
test, the program branches or shifts control to an instruction that is not the next
sequential instruction in the computer’s memory. If it fails the test, the branch is skipped
and program control resumes with the instruction immediately following the branch
instruction in memory. Remember that program control can also be shifted to an
instruction that is out of sequential order if it fails a test. This means you can transfer
control of the execution of your program depending on the conditions you create. You
may set a condition that branches if the value of a certain flag (operand) is zero.
In another instance, you may set a condition to branch if a specific flag is set
to 1.

The conditional branch instructions available in the 8502 microprocessor are:

BCC BNE
BCS BPL
BEQ BVC
BMI BVS

Here’s what the conditional branch instructions mean. The phrases in parentheses
are the literal translations of the op-code mnemonics. The remainder explains the
meaning behind the op-codes.

MACHINE LANGUAGE ON THE COMMODORE 128

155

BCC-—(Branch on Carry Clear) Branch if the Carry flag in the status register equals 0.

BCS—(Branch on Carry Set) Branch if the Carry flag in the status register equals 1.

BEQ—(Branch on result EQual zero) Branch if the zero flag in the status register equals 1.

BMI—(Branch on result MInus) Branch if the negative flag in the status register equals 1.

BNE—(Branch on result Not Equal to zero) Branch if the zero flag in the status register
equals O.

BPL—(Branch on result PLus) Branch if the negative flag in the status register equals 0.

BVC—(Branch on oVerflow Clear) Branch if the overflow flag in the status register
equals 0.

BVS—(Branch on oVerflow Set) Branch if the overflow flag in the status register
equals 1.

As you can see, all branching instructions depend on the value of a flag in the
status register.
Here are some branching examples.

READY.
MONITOR

PC SR AC XR YR SP
; FBOOO 00 00 00 00 F8

. 01828 E6 FA INC S$FA

. 0182A A5 FA LDA SFA

. 0182C DO 02 BNE $1830
. 0182E E6 FB INC SFB

. 01830 (8 INY

This program segment keeps track of the low and high pointers in $FA and $FB
respectively. The first instruction (INC $FA) increments the low byte address pointer.
Next, the contents of $FA is loaded into the accumulator. The branch instruction (BNE
$1830) evaluates the value of the accumulator. If the value is not equal to zero, the
branch is taken to the instruction located at address $1830 (INY). In this case the high
byte pointer is not yet ready to be incremented, so the INC $FB instruction is skipped. If
the value in the accumulator is equal to zero, the branch is skipped and the high byte
address pointer is incremented.

This is an example of the BPL (Branch on Result Plus} instruction.

READY.

MONITOR
PC SR AC XR YR SP i
; FBO0O 00 00 00 00 F8

. 01858 B8E 00 D6 STX $D600
. 0185B 2C 00 D6 BIT $D600
. 0185E 10 FB BPL $185B
. 01860 8D 0l D6 STA $D601

This example is a routine that checks the update ready status bit for the 8563
address register, and ensures that data is valid before writing a value to an 8563 register.
The first instruction stores the contents of the X register, which was previously loaded

with an 8563 register number, into the 8563 address register. The BIT instruction places
bit 7 of location $D600 into the negative flag in the 8502 status register. The BPL
instruction branches to the BIT instruction in location $185B as long as the value of the
negative flag is equal to 0. To the 8563 chip, this means the data is not yet valid and
cannot be written to or read from until bit 7 is set. This loop continues until the value of
bit 7 is 1, then it is transferred to the negative flag. The result now becomes negative
so the branch is skipped and control is passed to the next instruction in memory, which
stores the data into the 8563 data register. Refer to Chapter 10, Writing to an 8563
Register for an expanded version of this program.

REGISTER TRANSFER INSTRUCTIONS

Register transfer instructions move a value from one register (A, X, or Y) to another.
This instruction is useful since it only requires one byte of memory and saves the

programmer the trouble of loading the value from one register and storing it in another.
The 8502 microprocessor has the following six register transfer instructions:

TAX—Transfer contents of accumulator to X index register
TAY—Transfer contents of accumulator to Y index register
TSX—Transfer the contents of the stack pointer to X index register
TXA-—Transfer the contents of X index register to the accumulator
TYA—Transfer the contents of the Y index register to the accumulator
TXS—Transfer the contents of the X register to the stack pointer

The TXS and TSX instructions transfer values from the X index register to the
stack pointer and vice versa. This is useful if you need to take a value off the stack
temporarily, in a mathematical operation (for example, to operate on it and then replace
it on the stack). Another use is to take a value off the stack, place it in the X register for
temporary storage, add a new value on the stack, and then place the old value back on
top. This could be the case when you need to sort values in ascending order.

SHIFT AND ROTATE INSTRUCTIONS

The shift and rotate instructions manipulate the bits of the accumulator or memory.
Following are the shift and rotate instructions used by the 8502 family of microprocessors:

ASL—Shift the whole byte one bit to the left
LSR—Shift the whole byte one bit to the right
ROL—Rotate the whole byte one bit to the left
ROR—Rotate the whole byte one bit to the right

SHIFT INSTRUCTIONS

The shift instructions are useful when evaluating the value of a single bit at a time in a
series of bits that control your program. For example, a joystick read routine is an
example that calls for the shift instruction. Locations $DC0O0 and $DCO1 control the
joystick direction (bits 0-3), and the joystick fire button (bit 4). One way to evaluate
these values is to shift them to the right. This causes the value to be passed to the carry

MACHINE LANGUAGE ON THE COMMODORE 128

157

flag. If the carry flag is enabled (1), then the joystick is being pushed in the direction
corresponding to that bit. Here is a joystick read routine that uses the LSR instruction to
evaluate the direction of the joystick:

READY.

MONITOR
PC
; FBOOO

. 01800
. 01803
. 01805
. 01807
. 01808
. 0180A
. 0180B
. 0180C
. 0180E
. 0180F
. 01810
. 01812
. 01813
. 01814
. 0ls8le
. 01817
. 0l8ls
. 018la
. 0181cC

SR AC XR YR SP
00 00 00 00 F8

00 DC LDA
00 LDY
00 LDX
LSR
01 BCS
DEY
LSR
01 BCS
INY
LSR
01 BCS
DEX
LSR
01 BCS
INX
LSR
FA 5TX
FB 5TY
RTS

$DCO0
#5$00
#3500
$180B
S180F
$1813

$1817

SFA
SFB

ROTATE INSTRUCTIONS

The rotate instructions operate a little differently. Instead of the shifted bit falling into
the carry flag, the bit *‘falling off the edge’’ is placed in the carry bit, then the carry bit
is placed at the opposite end of the byte. For example, if the ROR (rotate right)
instruction is specified, each bit is moved one position to the right. Now bit 7 is placed in
the carry bit and the carry bit is rotated around to the left and placed in the bit 7 bit
position. The ROL instruction operates in the same manner, except the rotation is
leftward rather than to the right. See Figure 510 to visualize the rotation concept of the
ROR (rotate right) instruction:

Bit Position

P 07654321 ——P

Figure 5-10. Concept of ROR (Rotate Right) Instruction

SET AND CLEAR INSTRUCTIONS

The set and clear instructions are designed to manipulate the bits (flags) within the status
register and control certain conditions within the microprocessor. These are the set and
clear instructions available in 8502 machine language:

SEC Set the Carry Flag
SED Set Decimal Mode
SEl Set the Interrupt Disable Bit

CLC Clear the Carry Flag

CLD Clear Decimal Mode

CLI Clear the Interrupt Disable Bit
CLV Clear the Overflow Flag

Each of these instructions applies to a flag in the status register that controls a
particular microprocessor condition. Notice that each clear instruction has a counterpart
which sets the condition, except for CLV (Clear Overflow Flag). The overflow flag can
be set by the BIT instruction or from the result of a signed mathematical operation
overflowing into the sign bit.

Figure 5-11 shows the 8502 status register:

[7NlVl IBIDhIngﬂ PROCESSOR STATUS REG “P"

LCARWY 1 = TRUE

Lp ZERO 1 = RESULY ZERO
L3 IRQ DISABLE 1 = DISABLE
oo DECIMAL MODE 1 = TRUE
3 BRK COMMAND

- OVERFLOW 1 = TRUE
¥ NEGATIVE 1 = NEG

Figure 5-11. 8502 Status Register

The flags of the status register are set for various reasons. For example, set
decimal mode when you want to perform calculations in binary coded decimal (BCD)
notation rather than hexadecimal. Set the carry flag when you are performing subtrac-
tion. Set the interrupt disable bit when you want to prevent interrupts from occurring.
An example of a split screen, smooth scrolling raster interrupt routine is given at the end
of Chapter 8.

The clear instructions operate in the reverse of the set instructions. To make sure
that a carry does not occur during an addition operation, clear the carry flag before

MACHINE LANGUAGE ON THE COMMODORE {28

159

adding two numbers in the accumulator. To perform mathematical operations in hexa-
decimal or binary numbers, clear the decimal mode flag so that your calculations are not
mistakenly performed in binary coded decimal. Whenever the result of a signed mathe-
matical operation overflows into the sign bit an overflow error occurs. To correct this,
clear the overflow flag with the CLV op-code.

When a program requires interrupts, first set the interrupt disable bit (SEI) to
prevent interrupts from occurring. At the end of the interrupt initialization routine, issue
the CLI (Clear Interrupt Disable bit) instruction to enable (allow) interrupts to occur.

JUMP AND RETURN INSTRUCTIONS
JUMP INSTRUCTIONS

The 8502 processor makes use of two jump instructions:

JMP—Jump to new location
JSR—Jump to new location Saving the Return address

These instructions both redirect control of the microprocessor to a location other than
the one immediately following it in memory. The first instruction, JMP, is a one-way trip
to the location specified in the operand field, or the contents of it (indirect). For example:

JMP $1800

jumps to location $1800 and executes the instruction contained in that location. This is a
direct jump.
You can also jump indirectly. For example:

JMP ($1800)

jumps to the address specified in the contents of location $1800. For instance. location
$1800 contains the value $FE and location $1801 contains the value $CO. Therefore, the
above instruction jumps to location $SCOFE, and not location $1800. Jumping indirectly
is always denoted by parentheses around the address in the operand field, and it means
to jump to the location specified by the CONTENTS OF the address in the operand field.

The JSR instruction calls subroutines and saves the return address to the stack, so
when an RTS instruction is encountered at the end of the subroutine, the microprocessor
knows where to resume processing in the main (calling) program. Program control
resumes with the instruction in memory immediately following the JSR instruction. In
short, JSR is a round trip, while JMP is one way. For example:

. 01804 20 58 18 JSR $1858
. 01807 A2 OC LDX #$0C

jumps to the subroutine starting at location $1858. The return address is saved on the
stack, so when the RTS instruction is encountered in this subroutine:

. 01858 B8E 00 D6 STX $D600
. 0185B 2C 00 D6 BIT $D600

. 0185E 10 FB BPL $185B
. 01860 8D 01 D6 STA $D601
. 01863 60 RTS

the processor resumes with the main program instruction (LDX #$0C) in location $1807.

RETURN INSTRUCTIONS

The 8502 instruction set has two return instructions:

RTI—Return from Interrupt
RTS—Return from Subroutine

The first instruction returns from your interrupt service routine after the interrupt
disable bit is cleared (CLI) and the interrupt occurs. The RTI is the last instruction in the
interrupt service routine. The interrupt service routine is the series of instructions which
are performed on the occurrence of an interrupt. Refer to Chapter 8, Raster Interrupt
Split Screen Program with Horizontal Scrolling for a working example of an interrupt
service routine.

The RTS instruction is the last instruction in a machine language subroutine called
from BASIC or by the machine language JSR instruction. See the Jump instructions
above for an example.

STACK INSTRUCTIONS

Four stack instructions are included in the 8502 instruction set to manipulate the values
on the stack. These instructions are as follows:

PHA—Push accumulator on the stack
PHP—Push processor status on the stack
PLA—Pull accumulator from the stack
PLP—Pull processor status from the stack

The term push means to place a value on the stack, while pull means to remove
a vaiue from the stack. The only values pushed or pulled on to or off the stack are the
contents of the status register or the accumulator. The manipulation of the stack values
is impostant to the programmer when processing interrupts. The Raster Interrupt Split
Screen Program with Horizontal Scrolling section in Chapter 8 illustrates the manipula-
tion of the stack values prior to returning from the interrupt.

THE NOP INSTRUCTION

The NOP instruction stands for no operation. It is often used to add space between
program segments for readability. This instruction is not executable.

MACHINE LANGUAGE ON THE COMMODORE 128 161

,,,,,,,,,, 8502 INSTRUCTION AND
ADDRESSING TABLE

The next 16 pages contain the 8502 Instruction and Addressing Table. These are the
conventions used in the table:

OP-CODE

Brief definition

Operation notation

Status flags

Flags affected

Addressing Modes
Assembly language form
OP-CODE (in hex)

Number of bytes

Number of instruction cycles

SO® N LB

—_—

The following notation applies to this summary:

Accumulator

Index Registers
Memory

Processor Status Register
Stack Pointer

Change

No Change

Add

Logical AND
Subtract

Logical Exclusive Or
Transfer from Stack
Transfer to Stack
Transfer to

Transfer from

Logical OR

PC Program Counter
PCH Program Counter High
PCL Program Counter Low
OPER OPERAND

IMMEDIATE ADDRESSING MODE

!

ADC Add memory to accumulator with carry

Operation: A + M + C— A, C N E C
v/ v’/ v/

ADDRESSING ASSEMBLY op NO. NO.
MODE LANGUAGE FORM CODE BYTES CYCLES
Immediate ADC # Oper 69 2 2
Zero Page ADC Oper 65 2 3
Zero Page, X ADC Oper, X 75 2 4
Absolute ADC Oper 6D 3 4
Absolute, X ADC Oper, X 7D 3 4*
Absolute, Y ADC Oper, Y 79 3 4*
(Indirect, X) ADC (Oper, X) 61 2 6
(Indirect), Y ADC (Oper), Y " 2 5%
* Add 1 if page boundary is crossed.

AND “AND’’ memory with accumulator

Logical AND to the accumulator

Operation: AAM — A N E C

x/ \/ -

ADDRESSING ASSEMBLY op NO. NO.
MODE LANGUAGE FORM CODE BYTES CYCLES
Immediate AND # Oper 29 2 2
Zero Page AND Oper 25 2 3
Zero Page, X AND Oper, X 35 2 4
Absolute AND Oper 2D 3 4
Absolute, X AND Oper, X 3D 3 4*
Absolute, Y AND Oper, Y 39 3 4*
(Indirect, X) AND (Oper, X) 21 2 6
(Indirect), Y AND (Oper), Y 31 2 5

* Add 1 if page boundary is crossed.

I

D

A%
J/

ADC

AND

MACHINE LANGUAGE ON THE COMMODORE 128

163

ASL

ASL Shift Left One

Operation: C < [7/6/5[4]3[2]10] <0

Bit (Memory or Accumulator) ASL
NZ CI1 DV

v v v

ADDRESSING ASSEMBLY op NO. NO.
MODE LANGUAGE FORM CODE BYTES CYCLES
Accumulator ASL A 0A 1 2
Zero Page ASL Oper 06 2 5
Zero Page, X ASL Oper, X 16 2 6
Absalute ASL Oper 0E 3 6
Absolute, X ASL Oper, X 1E 3 7
BCC BCC Branch on Carry Clear BCC
Operation: Branch on C = 0 N Z C1 DV
ADDRESSING ASSEMBLY op NO. NO.
MODE LANGUAGE FORM CODE BYTES CYCLES
Relative BCC Oper 90 2 2%
* Add 1 if branch occurs to same page.
* Add 2 if branch occurs to different page.
BCS BCS Branch on carry set BCS

Operation: Branch on C = 1

ADDRESSING ASSEMBLY oP NO. NO.
MODE LANGUAGE FORM CODE BYTES CYCLES
Relative BCS Oper B0 2 2%

* Add 1 if branch occurs to same page.
* Add 2 if branch occurs to next page.

BEQ BEQ Branch on result zero BEQ

Operation: Branchon Z = 1 N Z C1 DV
ADDRESSING ASSEMBLY op NO. NO.
MODE LANGUAGE FORM CODE BYTES CYCLES .
Relative BEQ Oper FO 2 2%

* Add 1 if branch occurs to same page.
* Add 2 if branch occurs to next page.

BIT BIT Test bits in memory with accumulator BIT
Operation: A AM, M; > N, Mg —> V
Bit 6 and 7 are transferred to the status register. N Z C1 DV
If the result of AAM is zero then Z = 1, otherwise M,/ - - - Mg
Z :0 ~~~~~~~~~
ADDRESSING ASSEMBLY (0) NO. NO.
MODE LANGUAGE FORM CODE BYTES CYCLES
Zero Page BIT Oper 24 2 3
Absolute BIT Oper 2C 3 4
BMI BMI Branch on result minus BM!
Operation: Branchon N = 1 N Z C1 DV
ADDRESSING ASSEMBLY opP NO. NO.
MODE LANGUAGE FORM CODE BYTES CYCLES
Relative BMI Oper 30 2 2%

* Add t if branch occurs to same page.
* Add 2 if branch occurs to different page.

BNE BNE Branch on result not zero BNE
Operation: Branchon Z = 0 N Z C1I1 DV
ADDRESSING ASSEMBLY op NO. NO.
MODE LANGUAGE FORM CODE BYTES CYCLES
Relative BNE Oper DO 2 2%

* Add 1 if branch occurs to same page.
* Add 2 if branch occurs to different page.

MACHINE LANGUAGE ON THE COMMODORE 128

165

BPL BPL Branch on result plus

Operation: Branch on N = 0 N Z C
ADDRESSING ASSEMBLY op NO. NO.
MODE LANGUAGE FORM CODE BYTES CYCLES
Relative BPL Oper 10 2 2%

* Add | if branch occurs to same page.
* Add 2 if branch occurs to different page.

BRK BRK Force Break

Operation: Forced Interrupt PC + 2 | P | N Z C
ADDRESSING ASSEMBLY (0) Y NO. NO.
MODE LANGUAGE FORM CODE BYTES CYCLES
Implied BRK 00 1 7

1. A BRK command cannot be masked by setting 1.

BvVC BYC Branch on overflow clear

Operation: Branchon V = 0 N Z C
ADDRESSING ASSEMBLY opP NO. NO.
MODE LANGUAGE FORM CODE BYTES CYCLES
Relative BVC Oper 50 2 2%

* Add 1 if branch occurs to same page.
* Add 2 if branch occurs to different page.

BVS BYS Branch on overfiow set

Operation: Branchon V = 1 N Z C
ADDRESSING ASSEMBLY Op NO. NO.
MODE LANGUAGE FORM CODE BYTES CYCLES
Relative BVS Oper 70 2 2%

* Add 1 if branch occurs to same page.
* Add 2 if branch occurs to different page.

BPL

BRK

BVC

BYS

CLC CLC Clear carry flag
Operation: 0 — C N Z C
- - 0

ADDRESSING ASSEMBLY op NO. NO.
MODE LANGUAGE FORM CODE BYTES CYCLES
Implied CLC 18 1 2

CLD CLD Clear decimal mode

Operation: 0 — D N Z C
ADDRESSING ASSEMBLY opP NO. NO.
MODE LANGUAGE FORM CODE BYTES CYCLES
Implied CLD D8 1 2

CLl CLI Clear interrupt disable bit

Operation: 0 — 1 N Z C
ADDRESSING ASSEMBLY op NO. NO.
MODE LANGUAGE FORM CODE BYTES CYCLES
Implied CLI 58 1 2

CLv CLY Clear overflow flag

Operation; 0 - V N Z C
ADDRESSING ASSEMBLY opP NO. NO.
MODE LANGUAGE FORM CODE BYTES CYCLES

Implied

CLV

B8

1

2

I

CLC

CLD

CLi

CLv

MACHINE LANGUAGE ON THE COMMODORE 128

167

CMP CMP Compare memory and accumulator CMP
Operation: A - M N Z C1 DV
ADDRESSING ASSEMBLY op NO. NO.
MODE LANGUAGE FORM CODE BYTES CYCLES
Immediate CMP #Oper C9 2 2
Zero Page CMP Oper C5 2 3
Zero Page, X CMP Oper, X D5 2 4
Absolute CMP Oper CDh 3 4
Absolute, X CMP Oper, X DD 3 4*
Absolute, Y CMP Oper, Y D9 3 4*
(Indirect, X) CMP (Oper, X) C1 2 6
(Indirect), Y CMP (Oper), Y D1 2 5%
* Add 1 if page boundary is crossed.
CPX CPX Compare Memory and Index X CPX
Operation: X - M N Z C1 DV
ADDRESSING ASSEMBLY op NO. NO.
MODE LANGUAGE FORM CODE BYTES CYCLES
Immediate CPX #Oper E0 2 2
Zero Page CPX Oper E4 2 3
Absolute CprX Oper EC 3 4
CPY CPY Compare memory and index Y CPY

Operation: Y - M

v

NZ Cc1 DV

N; V

ADDRESSING ASSEMBLY OP NO. NO.
MODE LANGUAGE FORM CODE BYTES CYCLES
Immediate CPY #Oper Co 2 2

Zero Page CPY Oper C4 2 3
Absolute CPY Oper CC 3 4

DEC

DEC Decrement memory by one

Operation: M -1 —-> M N Z C
ADDRESSING ASSEMBLY or NO. NO.
MODE LANGUAGE FORM CODE BYTES CYCLES
Zero Page DEC Oper Ce 2 5
Zero Page, X DEC Oper, X D6 2 6
Absolute DEC Oper CE 3 6
Absolute, X DEC Oper, X DE 3 7

DEX

DEX Decrement index X by one

Operation;: X -1 — X N Z C
v v -
ADDRESSING ASSEMBLY op NO. NO.
MODE LANGUAGE FORM CODE BYTES CYCLES
Implied DEX CA 1 2

DEY

DEY Decrement index Y by one

Operation: Y -1—Y N Z C
v \” -
ADDRESSING ASSEMBLY op NO. NO.
MODE LANGUAGE FORM CODE BYTES CYCLES
Implied DEY 88 1 2

EOR EOR ‘“‘Exclusive—Or’’ memory with accumulator
Operation : A > M ¥ A N Z C
ADDRESSING ASSEMBLY (0) 3 NO. NO.
MODE LANGUAGE FORM CODE BYTES CYCLES
Immediate EOR #Oper 49 2 2
Zero Page EOR Oper 45 2 3
Zero Page, X EOR Oper, X 55 2 4
Absolute EOR Oper 4D 3 4
Absolute, X EOR Oper, X 5D 3 4*
Absolute, Y EOR Oper, Y 59 3 g*
(Indirect, X) EOR (Oper, X) 41 2 6
(Indirect), Y EOR (Oper), Y 51 2 5%

* Add 1 if page boundary is crossed.

I

I

\]

DEC

DEX

DEY

EOR

MACHINE LANGUAGE ON THE COMMODORE 128

169

INC INC Increment memory by one INC
Operation: M + 1 > M N Z C1 bV
ADDRESSING ASSEMBLY op NO. NO.
MODE LANGUAGE FORM CODE BYTES CYCLES
Zero Page INC Oper E6 2 5
Zero Page, X INC Oper, X Feé 2 6
Absolute INC Oper EE 3 6
Absolute, X INC Oper, X FE 3 7
INX INX Increment Index X by one INX
Operation: X + 1 - X N Z C1 DV
ADDRESSING ASSEMBLY op NO. NO.
MODE LANGUAGE FORM CODE BYTES CYCLES
Implied INX E8 1 2
INY INY Increment Index Y by one INY
Operation: Y + 1 —>Y N Z C1 DYV
ADDRESSING ASSEMBLY op NO. NO.
MODE LANGUAGE FORM CODE BYTES CYCLES
Implied INY C8 1 2
JMP JMP jump to new location JMP
Operation: (PC + 1) - PCL NZ C1 DV

(PC + 2) - PCH .

ADDRESSING ASSEMBLY OP NO. NO.
MODE LANGUAGE FORM CODE BYTES CYCLES
Absolute JMP Oper 4C 3

Indirect JMP (Oper) 6C 3 5

JSR

Operation: PC + 2|, (PC + 1) — PCL

LDA

(PC + 2) —> PCH

JSR Jump to new location saving return address

N Z CcC1 D

ADDRESSING ASSEMBLY op NO. NO.
MODE LANGUAGE FORM CODE BYTES CYCLES
Absolute JSR Oper 20 3 6

Operation: M — A

LDX

LDA Load accumulator with memory

N Z C1 D

v

¥

ADDRESSING ASSEMBLY or NO. NO.
MODE LANGUAGE FORM CODE BYTES CYCLES
Immediate LDA #Oper A9 2 2

Zero Page LDA Oper AS 2 3

Zero Page, X LDA Oper, X BS 2 4
Absolute LDA Oper AD 3 4
Absolute, X LDA Oper, X BD 3 4*
Absolute, Y LDA Oper, Y B9 3 4%
(Indirect, X) LDA (Oper, X) Al 2 6
(Indirect), Y LDA (Oper), Y Bl 2 5%

* Add 1 if page boundary is crossed.

Operation: M — X