
MAPPING
THE

COMMODORE
128

Ottis R. Cowper

COMPUTE! Publications,Inc
Part or ABC Consumer Magazines. Inc.
One of the ABC Publishing Companies

Greensboro, North Carolina

I

Copyright 1986^ COMPUTE! Publications, Inc. All rights reserved.

Reproduction or translation of any part of this work beyond that permitted by
Sections 107 and 108 of the United States Copyright Act without the permission of
the copyright owner is unlawful.

Printed in the United States of America

1 0 9 8 7 6 5 4 3 2 1

ISBN 0-87455-060-2

The author and publisher have made every effort in the preparation of this book to insure the ac-
curacy of the programs and information However, the information and programs in this book are
sold without warranty, either express or implied. Neither the author nor COMPUTE! Publications,
Inc. will be liable for any damages caused or alleged to be caused direct!)', indirectly, incidentally,
or consequentially by the programs or information in this book.

The opinions expressed in this book are solely those of the author and are not necessarily those of
COMPUTE! Publications, Inc.

COMPUTE! Publications, Inc., Post Office Boy 5406, Greensboro, NC 27403, (919)
275-9809, is part of ABC Consumer Magazines, Inc., one of the ABC Publishing Com-
panies, and is not associated with any manufacturer of personal computers. Commo-
dore 64 and Commodore 128 are trademarks of Commodore Electronics Limited,

Contents

Preface v

Introduction vii

1. Memory Organization 1

2. Common Working Storage Area 13

3. Bank 0 Working Storage Area 115

4. RAM Usage 181

5. BASIC ROM 195

6. Machine Language Monitor ROM 241

7. Screen Editor ROM 267

8. I/O Chip Registers, Color RAM, and Character ROM 331

9. Kernal ROM 509

Appendices 617

A. Interrupts/Todrf Heimarck 619

B. Bugs and Quirks in 128 ROM 625

C. Character, Screen, and Keyboard Codes 629

D. Musical Note Frequencies 645

E. 64/128 Memory Map Cross Reference 649

P. BASIC Keyword Index 657

G. Index of Locations and Routines 663

Preface
The random access memory (RAM), read-only memory (ROM),
and interface hardware chips in your Commodore 128 are like
postal stations with hundreds of thousands of mailboxes, each
of which can hold a single character, or byte of information.
This book is a map of all of those memory locations, but it's
more than just a list of addresses. It's also a thorough discus-
sion of how the locations are used by the computer, and, more
importantly, how you can take advantage of this information
to write more powerful programs.

Why a mapping book? The 128's BASIC is the most
powerful version yet in a Commodore computer. It could be
argued that there's little need to get "under the hood" of the
128, since most of the functions that required lots of PEEKs
and POKEs and an intimate understanding of internal hard-
ware functioning in earlier models like the Commodore 64 can
now be handled by simple BASIC statements on the 128.
While it may be true that the 128's advanced BASIC makes
programming easier, complete control over all the computer's
features belongs only to those who understand the secrets of
how the system operates. The purpose of this book is to un-
lock those secrets. The information is valuable for both begin-
ning BASIC and advanced machine language programmers.

The standard features provided by the 128 are often plain
vanilla, giving only the barest hint of the full capabilities of
the computer. Would you like to set up a Dvorak keyboard
that will work with almost any program? See the discussion of
the keyboard table pointers in Chapter 2. How about an 80-
column X 50-line screen display on your RGB monitor? The
explanation of the VDC chip registers in Chapter 8 explains
the necessary steps. Do you want to learn how the computer
sends data over the serial bus? The process is described in
Chapter 9. In fact, you'll find here the answers to most of your
questions about the 128. And these answers are written in un-
derstandable, clear prose.

This book is the result of painstaking disassembly and de-
ciphering of the Commodore 128 ROMs—a task that required
gallons of midnight oil. Commodore's BASIC and operating

system are now nearly ten years old. The ROM routines have
many twists and turns where various Commodore program-
mers have made additions and enhancements along the way.
Although the 128 is internally quite different from the Com-
modore 64, there are similarities. As a result, several previous
COMPUTE! books for the 64 provided invaluable assistance in
attempts to understand some of the intricacies. I'm particularly
indebted to Sheldon Leemon for Mapping the Commodore 64,
and to Dan Heeb for his two volumes of Commodore 64 and
V1C-20 Tool Kit: BASIC and Kernal.

Every effort has been made to insure that the information
provided here is accurate, but in a project of this size and
scope it is inevitable that some errors will creep in. Please
send any corrections you may discover to the attention of the
Book Editor at COMPUTE! Publications in Greensboro. You
can also send electronic mail messages concerning this book to
CompuServe user ID 73317,1143 or to BIX (Byte Information
Exchange) user name ottis.

I'd like to salute my wife Gail for moral and logistical
support far above and beyond the call of duty. I'd also like to
thank the COMPUTE! staff for patience shown when this
project dragged on months longer than anticipated. Finally, I'd
like to dedicate this book to George and George, departing
and arriving as the work took shape.

VI

Introduction
This memory map is a guide to the way a Commodore 128 in
128 mode uses and manipulates its RAM and ROM. No at-
tempt is made here to provide detailed coverage of the 128's
64 mode. A Commodore 128 in 64 mode doesn't just emulate
a Commodore 64; for all practical purposes it is a 64, with
completely separate Kernal and BASIC ROM. The memory
map of the Commodore 64 mode (and its BASIC 2.0) is cov-
ered in complete detail in COMPUTERS Mapping the Commo-
dore 64. However, Appendix E discusses those 128 features
available in 64 mode, and provides a cross reference of impor-
tant memory locations for 64 and 128 modes—information
that will be useful in translating Commodore 64 machine lan-
guage routines for use in 128 mode.

Nor does this book make any attempt to map the way the
128's CP/M mode uses memory. CP/M is a large and com-
plex operating system, and a CP/M mode memory map would
easily fill another entire volume. Moreover, the major portion
of CP/M is loaded from disk instead of being permanently
stored in ROM. As a result, CP/M is subject to more frequent
modification; so far, in the short life of the 128, there have
been at least three major revisions. Detailed technical infor-
mation on Commodore 128 CP/M is available in the book
CP/M Plus User's Guide /Programmer's Guide/System Guide,
available directly from Commodore.

Because this book is intended as a reference for intermedi-
ate to advanced BASIC and machine language programmers,
no attempt is made to provide simple explanations of all the
concepts discussed. The discussions assume familiarity with
elementary computer concepts such as bits and bytes, and
with memory quantity units such as a page (256 bytes) or a K
(kilobyte, 1024 bytes). The book also assumes familiarity with
the binary and hexadecimal numbering systems, although dec-
imal equivalents are usually provided.

Hexadecimal numbers in the text are always preceded by
a dollar sign ($), the standard 8502 nomenclature for hex.
Decimal numbers appear without any prefix. When you see a
pair of numbers separated by a slash (/), the first number is

vu

decimal and the second is hexadecimal, unless otherwise indi-
cated. This book uses the machine language monitor's conven-
tion of preceding binary numbers with a percent (%) sign. For
example, %11 indicates the binary value equivalent to decimal
3, not decimal 11.

When you see numbers mentioned in this book, it should
be obvious from the context whether the number refers to an
address or a value. Where there could have been confusion, the
terms value and location or address specify what is meant. In
keeping with common practice, only two hexadecimal digits are
generally used when discussing addresses in the first page of
memory (zero page). That is, addresses 0-255 are usually writ-
ten as $00-$FF. Four hexadecimal digits are used for all other
addresses. For example, location 256 will be written as $0100,

By nature, the computer prefers to deal with whole num-
bers and doesn't handle fractions easily. Floating point is the
method used to manipulate whole and fractional decimal
numbers in 128 BASIC. Floating point also enables very large
numbers to be handled in only a few bytes. All mathematical
operations in BASIC are performed in floating point. (When
you specify integer variables in a mathematical operation, the
integer value is converted to floating point for the operation;
then the result is reconverted to integer format.) However, be-
cause floating point is a rather complex subject, it is not ex-
plained in detail in this book even though it is mentioned
extensively in Chapter 5. If you are interested in the inner
workings of floating point, refer to the excellent discussion of
the topic in COMPUTED VIC-20 and Commodore 64 Tool Kit:
BASIC, by Dan Heeb. Although not written specifically for the
128, all the information about floating point applies to BASIC
7.0 as well.

Several terms used freely in this book need clarification.
Most locations discussed in Chapters 2 and 3 are either point-
ers, vectors, or flags. Pointers and vectors refer to a pair of
memory locations that hold an address. Two-byte address val-
ues in pointers and vectors are stored in low-byte/high-byte
order. That is, the least significant byte of the address should
be stored in the first byte of the pointer or vector, and the
most significant byte of the address in the second pointer or
vector byte.

The difference between pointers and vectors is that a
pointer (as the name implies) points to an address from which

vm

data is to be retrieved or in which data is to be stored,
whereas a vector points to the address of a routine to be
executed.

A flag is a memory location in which individual bits are
used to signal particular conditions. A binary bit can have one
of two conditions, %0 or %1 (also referred to as clear and set,
respectively). The term comes from the analogy of flags, like
those on rural mailboxes, that can be either lowered or raised
(there's no half-mast in binary). An example is the active
screen flag, location 215/$D7. Bit 7 of the location is clear
(%0) when the 40-column display is active, or set (%1) when
the 80-column display is active. (You'll find that flag locations
often use bit 7 because that bit can be tested very easily in
machine language with the BMI and BPL instructions.)

Chapter 1 provides a brief introduction to the way the
128 arranges and manages its memory resources. That chapter
and Chapter 4 are the only chapters in the book intended to
be read from beginning to end. The remaining chapters de-
scribe the use or function of various areas of memory and
should be used as an encyclopedic reference. The chapters
generally cover memory in ascending address order, starting
with zero page in Chapter 2 and ending with the Kernal jump
table at the very top of memory in Chapter 9. Each entry in
Chapters 2-9 consists of the decimal and hexadecimal address
of the location or routine; a label, if one is commonly used; a
short statement of the function of the location or routine; and
a short description of how the location or routine is used.

IX

Memory
Organization
The memory arrangement of a Commodore 128 in 128 mode
is much different and more complex than that of any of its
Commodore predecessors. As a result, it's necessary to under-
stand how the 128 organizes and manages its memory resources
before beginning a detailed examination of how those re-
sources are used. Of the computer's three possible personal-
ities, 128 mode is the default. Unless you take some other
action—holding down the Commodore key, inserting a Com-
modore 64 cartridge, placing a CP/M boot disk in the drive—
the computer comes up in 128 mode when you turn it on. As
the native mode of the system, 128 mode makes the most
complete use of the available memory resources.

You might be interested to learn that, while 128 mode is
the default operating mode, the computer always starts out in
CP/M mode. When you first turn on power, the Z80 micro-
processor has control before the 8502 is allowed to take over.
There are only a few signs of this: two short routines are cop-
ied into bank 0 RAM. One, at 65488/$FFD0, is an 8502 ML
routine that surrenders control to the Z80; the other, at
65504/$FFEO, is a Z80 ML routine that surrenders control to
the 8502. There are no routines in any of the 128 mode ROMs
to perform this initialization. However, once the Z80 com-
pletes its initialization sequence, it turns the system over to
the 8502 and 128 mode, and does not go back to CP/M mode
unless a CP/M disk is booted.

128 Mode
The 128 mode configuration includes 128K of random access
memory (RAM) in two 64K blocks, a 28K BASIC interpreter in
read only memory (ROM), a 4K machine language monitor in
ROM, 4K of screen editor routines in ROM, 8K of Kernal op-
erating system routines in ROM, a 4K character pattern ROM,
and 4K of address space for hardware chip registers (with two
separate IK banks of color RAM). The design also provides for

up to 32K of additional ROM internally and up to 32K of
ROM on cartridge. The operating system can support two ad-
ditional 64K banks of RAM, although the 128's design makes
no provision for adding memory chips. In sum, that's 373K of
address space, as illustrated in Figure 1-1.

This entire 373K address space must be manipulated by
the 8502 microprocessor that is the brains of the 128, but an
8502 can directly access only 64K of memory at a time. So
how is 128 mode even possible?

Memory Management Unit
The key is the MMU (Memory Management Unit), a special
chip designed by Commodore's engineers to control the mem-
ory elements that are visible to the processor. The MMU is as-
sisted by a companion device, the PLA (Programmable Logic
Array). The PLA accepts a variety of system timing and con-
trol signals and combines them in various ways to create new
control signals, taking the place of many separate discrete
logic gates. Together, these chips assemble a 64K assortment
of RAM, ROM, and I/O chips for the microprocessor to
manipulate. The MMU is described in detail in Chapter 8, but
the central feature of its memory control system is the configu-
ration register. The value stored in this register, or in a related
preconfiguration register, determines what elements the pro-
cessor sees where. Only the 64K of memory elements defined
by the MMU is available to the processor at any given time.
Figure 1-2 illustrates the defined function of each bit in the
register.

Since the configuration register is a standard eight-bit lo-
cation, it can hold 256 different values (0-255/$00-$FF); thus,
there are theoretically 256 possible configurations of memory
resources in a Commodore 128. Fortunately, not all of the pos-
sibilities are equally useful, so you don't have to concern your-
self with learning them all. The designers of the 128 operating
system selected 16 of the most useful arrangements and de-
fined them as banks.

Banks are a central feature of the 128, Banks are not fixed
physical arrangements of RAM and ROM. Instead, the 128's
banks are illusions created by the MMU to allow the micro-
processor to manipulate much more memory than would oth-
erwise be possible. There's nothing particularly sacred about
the defined banks—you are free to create your own custom

configurations (see the discussion of the MMU in Chapter 8
for details)—but it is usually more convenient to work in one
of the predefined banks. Table 1-1 shows the bank configura-
tions defined by the 128's operating system.

Figure 1-2. MMU Configuration Register

Table 1-1. Standard Bank Configurations

Bank
0/$00
i/$oi

2/$02

3/$03

4/$04

5/$05

6/$ 06

7/$07

8/$08

9/$09

Configuration
Register
Setting
63/$3F

127/$7F

191/$BF

255/SFF

22/$16

86/$56

150/$96

214/$D6

42/$2A

106/$6A

Addresses
$0000-$FFFF
$0000-$03FF
$0400-$FFFF
$0000-$03FF
$0400-$FFFF
$0000-$03FF
$0400-$FFFF
$0000-$7FFF
$8000-$CFFF
$D000-$DFFF
$E000-$FFFF
$0000-$03FF
$0400-$7FFF
$8000-$CFFF
$D000-$DFFF
$E000-$FFFF
$0000-$03FF
$0400-$7FFF
$8000-$CFFF
$D00O-$DFFF
$EO00-$FFFF
$0000-$03FF
$0400-$7FFF
$8000-$CFFF
$D0O0-$DFFF
$E000-$FFFF
$0000-$7FFF
$8000-$CFFF
$D000-$DFFF
$E000-$FFFF
$0000~$03FF
$0400-$7FFF
$8000-$CFFF
$D000-$DFFF
$EO00-$FFFF

Contents
RAM from block 0
RAM from block 0
RAM from block 1
RAM from block 0
RAM from block 2
RAM from block 0
RAM from block 3
RAM from block 0
Internal function ROM
I/O block
Internal function ROM
RAM from block 0
RAM from block 1
Internal function ROM
I/O block
Internal function ROM
RAM from block 0
RAM from block 2
Internal function ROM
I/O block
Internal function ROM
RAM from block 0
RAM from block 3
Internal function ROM
I/O block
Internal function ROM
RAM from block 0
External function ROM
I/O block
External function ROM
RAM from block 0
RAM from block 1
External function ROM
I/O block
External function ROM

Configuration
Register

Bank Setting
10/$0A 170/$AA

Addresses
$0000-$03FF
$0400-$7FFF
$8000-$CFFF
$D0O0-$DFFF
$EO00-$FFFF

Contents
RAM from block 0
RAM from block 2
External function ROM
I/O block
External function ROM

11/$OB 234/$EA $0000-$03FF RAM from block 0
$0400-$7FFF RAM from block 3
$8000-$CFFF External function ROM
$D00O-$DFFF I/O block
$E000-$FFFF External function ROM

12/$0C 6/$06 $0000-$7FFF RAM from block 0
$8000-$BFFF Internal function ROM
$C00O-$CFFF System ROM (screen

editor)
$DO00~$DFFF I/O block
$E00O-$FFFF System ROM (Kernal)

13/$0D 10/$0A $0000-$7FFF RAM from block 0
$8000-$BFFF External function ROM
$CO00-$CFFF System ROM {screen

editor}
$D0O0-$DFFF I/O block
$EO00-$FFFF System ROM (Kernal)

14/$0E l/$01 $0000-$3FFF RAM from block 0
$4000-$CFFF System ROM (BASIC

7.0, ML monitor, screen
editor)

$D000-$DFFF Character ROM
$E0O0-$FFFF System ROM (Kernal)

15/$0F 0/$00 $0000-$3FFF RAM from block 0
$4000-$CFFF System ROM (BASIC

7.0, ML monitor, screen
editor)

$D00O-$DFFF I/O block
$E00O-$FFFF System ROM (Kernal)

Exceptions: In all banks, locations $0000 and $0001 are the 8502 processor's on-chip
I/O port direction and data registers, and locations $FFOO-$FF04 are MMU configura-
tion and load configuration registers.

This banking system would be too unwieldy to be usable
were it not for another capability of the MMU. Notice in the
table that the contents of addresses 2-1023/$0002-$03FF are
the same in all banks—RAM from block 0. (This particular
feature is controlled by the MMU's RAM configuration register
rather than by the configuration register.) The common area of
RAM is another key to the operation of the 128. Since the area
is visible to all banks, a collection of machine language sub-
routines is copied here from Kernal ROM when the system is
initialized. These common subroutines, along with the fact that
the MMU makes itself visible in every bank, allow routines in
one bank to retrieve, store, and compare data in any other bank;
to call subroutines in another bank; or to jump directly to
routines in other banks. See the INDFET, INDSTA, INDCMP,
JSRFAR, and JMPFAR entries in Chapter 2.

Actually, the operating system's banking scheme promises
more than the 128 is able to deliver at this time. Of the four
64K blocks of RAM in the general operating system specifica-
tion, only two (blocks 0 and 1) are present in the current ver-
sion of the 128. The operating system was designed to leave
open a gateway to future enhanced versions (perhaps a Com-
modore 256). The circuit board doesn't provide for the addi-
tion of RAM chips to populate blocks 2 and 3, nor does the
current version of the MMU actually support them (bit 7 of
the configuration register has no effect). Thus, banks 2, 3, 6, 7,
10, and 11 can be dismissed outright. If you try to access block
2 RAM (banks 2, 6, or 10), what you'll see is block 0 RAM, so
banks 0 and 2, 4 and 6, and 8 and 10 are identical. An at-
tempt to access block 3 will show block 1, so banks 1 and 3, 5
and 7, and 9 and 11 are also identical.

You should be aware that connecting one of the Commo-
dore memory expansion modules (the 1700 for 128K or the
1750 for 512K) won't fill in these missing blocks of RAM.
Memory in the expansion modules isn't connected directly to
the computer's address lines. Instead, it must be accessed indi-
rectly via the RAM Expansion Controller (REC) chip in the
module. See Chapter 8 for more information about the REC
and memory expansion modules. Memory in the expansion
modules is also arranged in banks, but you shouldn't confuse
these with the internal RAM blocks.

Banks 4, 5, and 12 are useful only if you have a function
ROM chip installed in the free socket on the circuit board. Banks

8, 9, and 13 are useful only if you have a 128 ROM cartridge
(called an external function ROM) plugged into the expansion
port. If you attempt to access one of these ROM areas with no
ROM chip installed, you'll get only random, unpredictable
data. Since both internal and external function ROMs for the
128 are relatively rare, you can ignore those banks as well,
unless you are writing a program specifically to put into ROM.

That leaves only four standard bank configurations which
are generally useful: 0, 1, 14, and 15. Figure 1-3 shows the
contents of these banks. All the memory areas mapped in this
book appear in one or more of these banks. The lower IK of
block 0 RAM is the heavily used common area of RAM which
appears in every block. It's covered in Chapter 2. The next 7K
of block 0 (1024-7167/$0400-$lBFF) is used as working stor-
age by a variety of Kernal and BASIC routines. This area, visi-
ble in banks 0, 14, and 15, is covered in Chapter 3. Other
RAM usage (banks 0 and 1} is discussed in Chapter 4. Chapter
5 covers BASIC ROM, visible in banks 14 and 15. Chapters 6
and 7 cover the machine language monitor and screen editor,
respectively—both also visible in banks 14 and 15. Chapter 8
covers two of the possibilities for addresses 53248-57343/
$D000-$DFFF: the I/O block (including VIC-II chip color
RAM) and character pattern ROM. Chapter 9 covers the
Kernal ROM seen in banks 14 and 15.

There is one memory selection function not controlled by
the MMU. The 128 has two separate IK banks of color RAM,
both seen at the same addresses, 55296-56319/$D800-$DBFF
in the I/O block. Bits 0 and 1 in the 8502 processor's on-chip
data I/O port (location l/$01) determine which block will be
seen by the processor and by the VIC chip. See the entry for
location l/$01 in Chapter 2 for more information.

10

Figure 1-3. Normal Bank Configurations

11

Common Working
Storage Area
The 128's memory management hardware has the ability to
create common areas of memory—areas where the same
memory will be seen regardless of the bank configuration. The
system allows up to 16K at both the top and bottom of the
processor's address space to be made common. However, the
operating system uses only part of this capability, setting up a
IK common area at the bottom of memory, locations 0-1023/
$0000-$03FF. No matter what bank configuration you choose,
the same block 0 RAM will be seen at these locations. It is this
common area, and especially the common routines in page 2,
that makes the 128's bank-switching operating system possible.

Zero Page: BASIC and Kernal Working
Storage
0-255/$00-$FF
The first 256 memory locations—collectively known as zero
page—are special in any computer based on a 6502-family
microprocessor like the 128's 8502. The processor has several
special addressing modes which use this area. The zero-page
addressing modes not only require less memory (two bytes per
instruction instead of three); they also execute faster. As a re-
sult, system ROM routines make extensive use of these modes.
Nearly every address in this page of memory is used by one
or more system ROM routines. In fact, you'll notice in the en-
tries for this page that a number of locations have multiple
functions, and some have multiple entries.

One of the biggest challenges for machine language pro-
grammers is finding sufficient free space in zero page for their
programs. Only four locations in the entire page (251-254/
$FB-$FE) are completely unused by any system routine. Most
of the locations in the range 10-143/$OA-$8F are used only
by BASIC, not by the Kernal. Thus, many of those locations
are free for machine language programs that do not require

15

$00

BASIC. You should be aware that any value stored in zero
page will be wiped out during a reset. The RAMTAS routine
[$E093], part of the reset sequence, clears locations 2-255/
$02-$FF to zero. (You can prevent this by holding down the
RUN/STOP key during the reset which will cause the RAMTAS
step of the reset sequence to be skipped. In this case, the sys-
tem will be left in the machine language monitor after the re-
set rather than in BASIC.)

Unlike other Commodore computers, the 128 has the abil-
ity to make the 8502 see zero page anywhere in memory. The
MMU (memory management unit) chip has a feature which al-
lows the processor to exchange zero page with another page
so that references to zero page are directed to the alternate
page, and references to addresses in the alternate page are di-
rected to zero page. See the discussion of the MMU in Chapter
8 for details. The 128 does not normally make use of this fea-
ture; the default position for zero page is at the true zero-page
locations.

The first two addresses in this page have a special func-
tion. The 8502 processor has a built-in I/O port, and it sees
the registers for that port at locations 0-l/$00-$01. References
to those addresses always affect the port; the processor will
never see the first two bytes of RAM. These locations are not
affected by the page-swapping feature. Regardless of where
the remainder of zero page is currently seen, locations 0-1 are
used exclusively to control the internal port.

0 $00 D8502
Data direction register for processor's on-chip I/O port
Bits 0-6 in this location control the direction of data flow for
the seven I/O (input/output) lines on the 8502 microprocessor
chip, labeled P0-P6. Setting a bit to %0 makes the correspond-
ing line an input, and its state can be read at the correspond-
ing bit position in location $01. Setting a bit to %1 makes the
corresponding line an output, and its state will be controlled
by the setting of the corresponding bit position in location
$01. The value here is initialized to 47/$2F by the IOINIT
routine [$E109], part of both the reset and RUN/STOP-
RESTORE sequences. This sets lines 0-3 and 5 for output and
lines 4 and 6 for input. Since only seven lines are provided,
bit 7 is not used. That bit will retain whatever value is written
to it, but its setting has no effect.

16

$ 0 1

1 $01 R85O2
Data register for processor's on-chip I/O port
Each of the seven I/O lines on the 8502 microprocessor has a
corresponding bit in this location (bit 7 is unused). The direc-
tion of data flow on the lines is controlled by location $00. If
an I/O port line is set for input, the corresponding bit here
will reflect the state of the input line: %0 if the line is low (0
volts), or %1 if the line is high (+ 5 volts). While a line is set
for input, values written to the corresponding bit have no ef-
fect. If an I/O port line is set for output, its state will be con-
trolled by the corresponding bit in this location. Storing a %0
in the bit forces the output line to a low (0 volts) state, while
storing a %1 in the bit sets the line to a high (+ 5v state).

The I/O lines are connected as follows:

Bits 0-1: The lines connected to these bits control which of the
two IK blocks of color memory will be visible at 55296-56319/
$D800-$DBFF when the I/O block is selected. For this pur-
pose, the lines should always be configured as outputs. Unlike
in the Commodore 64, these bits have no effect on whether
RAM or ROM is selected at a given address. In the 128, mem-
ory management is the domain of the MMU chip. See Chapter
8 for more information.

Bit 0 controls which block the processor sees, while bit 1
controls which block the VIC chip sees. Setting either bit to
%0 selects block 0, while a setting of %1 selects block 1. The
setting of these bits is established during the screen-setup por-
tion of the screen IRQ routine [$C194], That routine sets both
bits to %1 for text mode (GRAPHIC 0), or for the text portion
of the split-screen modes (GRAPHIC 2 or GRAPHIC 4). For
the bitmapped modes (GRAPHIC 1 or GRAPHIC 3) or for the
bitmapped portion of the split-screen modes, bit 1 is set to
%0. Thus, the VIC sees different blocks of memory for the
modes, and drawing on the bitmapped screen will not disturb
colors on the text screen. To manipulate these bits in other
ways, the screen-setup portion of the IRQ routine must be dis-
abled. Refer to the discussion of the color memory area in
Chapter 8 for details on switching color blocks.

Bit 2: The line for this bit, known as the CHAREN line, deter-
mines whether the VIC chip will see character ROM in its cur-
rent video bank. For proper functioning, the line should be
configured as an output. While this bit is %0, the VIC chip

17

$ 0 1

will see character ROM beginning at an offset of 4096/$1000
from the start of the bank. The uppercase/graphics set will
appear to occupy locations with offsets of 4096-6143/
$1000-$17FF, and the lowercase/uppercase set will appear at
offsets of 6144-8191/$1800-$lFFF. The character sets will be
visible in all VIC video banks, not just banks 0 and 2 as was
the case in the Commodore 64. Only the VIC chip will see the
character ROM at these addresses; the processor will still see
the locations as RAM or system ROM, depending on the ad-
dress and bank configuration.

To disable this feature and allow the VIC chip to see
RAM at the character set image addresses, the CHAREN bit
must be set to % 1 . However, this cannot normally be done di-
rectly because this bit has a shadow at location 217/$D9. Dur-
ing the text mode-setup portion of the screen editor IRQ
routine [$C194], the value of bit 2 of the shadow location is
copied into this bit. Thus, to change this bit you should set bit
2 of the shadow location instead. If the screen-setup portion of
the IRQ routine is disabled (by storing the value 255/$FF in
location 216/$D8, for example), the setting of this bit can then
be changed directly. The IRQ routine always sets this bit to
%1 for bitmapped screen modes or for the bitmapped portion
of split-screen modes.

Bit 3: The line for this bit is connected to the CASS WRT (cas-
sette write) line of the cassette port. The setting of this bit de-
termines whether a signal is being written to the tape. For this
purpose, the line must be configured as an output. See Chap-
ter 9 for more information about the tape routines.

Bit 4: The line for this bit is connected to the CASS SENSE
(cassette button sense) line of the cassette port. If the port line
is configured as an input, this bit can be read to determine
whether any buttons are currently pressed on the Datassette.
When no buttons are pressed (or when no Datassette is con-
nected to the port), this bit will be % 1 . Pressing any button
will change this bit to %0. Unfortunately, the bit merely de-
tects whether buttons are pressed, and cannot indicate which
specific buttons. If you press FAST FORWARD when in-
structed to press PLAY, the 128 won't notice the difference.

Bit 5: The line for this bit controls the CASS MTR (cassette
motor) line of the cassette port. When this bit is % 1 , the
power supply to the cassette motor, provided via the CASS

18

$02

MTR line, is turned off. Setting this bit to %0 turns on the 9-
volt power supply to the motor. The setting of this bit is con-
trolled by a shadow location, the cassette motor interlock at
192/SCO.

Bit 6: The line for this bit is connected to the CAPS LOCK key
on the keyboard. The line should be configured as an input to
read the state of this key. The bit will return a %1 while the
key is in the up position (CAPS LOCK off), and a %0 when
the key is down (CAPS LOCK on). The status of this bit is
read by the SCNKEY routine [$C55D] during each system
IRQ, and bit 4 of location 211/$D3 will be assigned the oppo-
site setting of this bit.

Bit 7: There is no I/O port line connected to this bit, so the
value here is meaningless. The bit always returns a %0 when
read.

2 $02 BANK
Target bank for JMPFAR and JSRFAR
The value here determines the bank to which the JMPFAR
routine [S02E3] will jump. Because the JSRFAR routine
[$02CD] calls JMPFAR as a subroutine, the value here also de-
termines the destination bank for a JSRFAR. This location
should be loaded with the number (0-15) of the desired bank
before either JMPFAR or JSRFAR is used.

The BASIC SYS statement is implemented using JSRFAR.
In that case, the value here is set from the value in location
981/$03D5, which holds the parameter from the most recent
BANK statement (15/$0F by default). The BASIC routine that
searches for a token in the runtime stack [$4FAA] also uses lo-
cation 2/$02 for temporary storage.

When the monitor is entered at the break entry point
[$B003], this location is loaded with the bank number in
which the system was operating when the BRK opcode was
encountered. When the monitor is entered at the cold-start en-
try point [$B000], as by the BASIC MONITOR command, this
location is initialized to 15/$0F (for bank 15). The monitor R
command displays the value in this location as the first hexa-
decimal digit of the PC value. The register change (;) com-
mand can be used to alter the value stored here. The value
determines the bank for the monitor G (go to routine) and J
(jump to subroutine) commands, which use JMPFAR and
JSRFAR, respectively.

19

3-4 $03-$04

3-4 $03-$04 PC
Target address for JMPFAR and JSRFAR
The values here determine the address to which the JMPFAR
routine [$02E3] will jump. Because the JSRFAR routine
[$02CD] calls JMPFAR as a subroutine, the value here also de-
termines the destination address for a JSRFAR. These locations
should be loaded with the desired address before either
JMPFAR or JSRFAR is used. Contrary to the normal order of
address bytes, the high byte of the target address should be
stored in location 3/$03 and the low byte in location 4/$04.

When the monitor is entered at the break entry point
[$3003], these locations are loaded with the program counter
contents stored on the stack when the BRK opcode was en-
countered. Because of the way the microprocessor handles
BRK, this value will be two bytes beyond the address of the
BRK ($00) opcode. When the monitor is entered at the cold-
start entry point [$B000], as by the BASIC MONITOR com-
mand, these locations are initialized to 45056/$B000 (the cold-
start entry address). The monitor R command displays the
value in these locations as the four rightmost hexadecimal dig-
its of the PC value. The register change {;) command can be
used to alter the value stored here. The value determines the
target address for the monitor G (go to routine) and J (jump to
subroutine) commands, which use JMPFAR and JSRFAR,
respectively.

5 $05 S-REG
Status register storage for JMPFAR and JSRFAR
The value in this location is transferred to the processor's sta-
tus register when a routine is called with JMPFAR [$02E3]. Be-
cause JSRFAR [$02CD] also uses JMPFAR, the value here will
also determine the initial status register value for a routine
called with JSRFAR. You can use this location to set up par-
ticular entry conditions for the target routine. For example,
certain system routines behave differently depending on
whether the carry bit, bit 0 of the status register, is clear (%0)
or set (%1) when the routine is called. You can specify the en-
try setting of the carry bit by setting bit 0 of this location. Fig-
ure 2-1 shows the function of the various status register bits. If
you don't need any special entry conditions, it's best to set
this location to 0/$00.

20

$05 5

The contents of the status register upon return from the
target routine are stored in this location before return from
JSRFAR, so you can read this location to determine the exit
status of the routine. This is useful because system routines
often use status register bits, particularly carry, to return infor-
mation about the success of the operation performed by the
routine.

Figure 2-1. 8502 Processor Status Register

The BASIC 7.0 version of the SYS statement allows you
to specify a status register value, which will be placed in this
location before the JSRFAR to the specified address. The
RREG statement can be used to read the value here. (The sta-
tus register value returned by RREG is actually the contents of
this location.)

When the monitor is entered at the break entry point
[$B003], this location is loaded with the status register contents
stored on the stack when the BRK opcode was encountered.
When the monitor is entered at the cold-start entry point
[$BO00], as by the BASIC MONITOR command, this location
is initialized to zero. The monitor R command displays the
value in this location under the heading SR. The register
change (;) command can be used to alter the value stored here.
The value determines the status register contents for the moni-
tor G (go to routine) and J (jump to subroutine) commands,
which use JMPFAR and JSRFAR, respectively.

21

6 $06

6 $06 A_REG
Accumulator storage for JMPFAR and JSRFAR
The value in this location is transferred to the processor's ac-
cumulator {A register) when a routine is called with JMPFAR
[$02E3J. Because JSRFAR [$02CD] also uses JMPFAR, the
value here will also determine the initial accumulator value for
a routine called with JSRFAR. You can use this location to set
up a particular entry value for the target routine. The contents
of the accumulator upon return from the target routine are
stored in this location before return from JSRFAR, so you can
read this location to determine the exit accumulator value. The
JSRFAR routine itself uses the accumulator after return from
the target routine, so you must look to this location for the ac-
cumulator value from the target routine.

The BASIC 7.0 version of the SYS statement allows you
to specify an accumulator value, which will be placed in this
location before the JSRFAR to the specified address. The
RREG statement can be used to read the value here. (The ac-
cumulator value returned by RREG is actually the contents of
this location.)

When the monitor is entered at the break entry point
[$B003], this location is loaded with the accumulator contents
stored on the stack by the IRQ/BRK handler [$FF17]. When
the monitor is entered at the cold-start entry point [$B000], as
by the BASIC MONITOR command, this location is initialized
to zero. The monitor R command displays the value in this lo-
cation under the heading AC. The register change {;) com-
mand can be used to alter the value stored here. The value
determines the accumulator contents for the monitor G (go to
routine) and J (jump to subroutine) commands, which use
JMPFAR and JSRFAR, respectively.

7 $07 X_REG
X register storage for JMPFAR and JSRFAR
The value in this location is transferred to the processor's X
register when a routine is called with JMPFAR [S02E3J. Be-
cause JSRFAR [$02CD] also uses JMPFAR, the value here will
also determine the initial X register value for a routine called
with JSRFAR, You can use this location to set up a particular
entry value for the target routine. The contents of the X regis-
ter upon return from the target routine are stored in this loca-
tion before return from JSRFAR, so you can read this location

22

$08 8

to determine the exit X register value. The JSRFAR routine it-
self uses the X register after return from the target routine, so
you must look to this location for the X register value from the
target routine.

The BASIC 7.0 version of the SYS statement allows you
to specify an X register value, which will be placed in this lo-
cation before the JSRFAR to the specified address. The RREG
statement can be used to read the value here. (The X register
value returned by RREG is actually the contents of this
location.)

When the monitor is entered at the break entry point
[$B003], this location is loaded with the X register contents
stored on the stack by the IRQ/BRK handler [$FF17]. When
the monitor is entered at the cold-start entry point [$B000], as
by the BASIC MONITOR command, this location is initialized
to zero. The monitor R command displays the value in this lo-
cation under the heading XR. The register change {;) command
can be used to alter the value stored here. The value deter-
mines the X register contents for the monitor G (go to routine)
and J (jump to subroutine) commands, which use JMPFAR and
JSRFAR, respectively.

8 $08 Y_REG
Y register storage for JMPFAR and JSRFAR
The value in this location is transferred to the processor's Y
register when a routine is called with JMPFAR [$02E3]. Be-
cause JSRFAR [$02CD] also uses JMPFAR, the value here will
also determine the initial Y register value for a routine called
with JSRFAR. You can use this location to set up a particular
entry value for the target routine. The contents of the Y regis-
ter upon return from the target routine are stored in this loca-
tion before return from JSRFAR, so you can read this location
to determine the exit Y register value.

The BASIC 7.0 version of the SYS statement allows you
to specify a Y register value, which will be placed in this loca-
tion before the JSRFAR to the specified address. The RREG
statement can be used to read the value here. (The Y register
value returned by RREG is actually the contents of this
location.)

When the monitor is entered at the break entry point
[$B003], this location is loaded with the Y register contents
stored on the stack by the IRQ/BRK handler [$FF17]. When

23

9 $09

the monitor is entered at the cold-start entry point [$B000], as
by the BASIC MONITOR command, this location is initialized
to zero. The monitor R command displays the value in this lo-
cation under the heading YR. The register change (;) command
can be used to alter the value stored here. The value deter-
mines the Y register contents for the monitor G (go to routine)
and J (jump to subroutine) commands, which use JMPFAR and
JSRFAR, respectively.

9 $09 STKPTR
Stack pointer storage for JSRFAR and monitor
This location is used in the JSRFAR routine [$02CD] to record
the value in the stack pointer upon return from the target rou-
tine. The value here doesn't affect the setting of the stack
pointer; it merely records the exit value.

When the monitor is entered via either the cold-start entry
point [$B000] or the break entry point [$B003], the current
stack pointer value is stored in this location. The monitor R
command displays the value in this location under the head-
ing SP. The register change (;) command can be used to alter
the value stored here. The value here is restored to the
microprocessor's stack pointer before the JMPFAR in the G (go
to routine) command routine. This location will hold the stack
pointer value after a J (jump to subroutine) command, since
that routine uses JSRFAR.

9 $09 CHARAC or INTEGR
Working storage for various routines
This location is used for several different purposes by a variety
of BASIC routines. It serves as temporary storage in the rou-
tine which interprets ASCII characters as numeric values
[$50A0]. It holds the value of the desired search character in
the routine which searches for a particular character in a
BASIC program line [$52A2], and in the routine that puts a
string into the string pool [$869A]. It holds the low byte of the
integer value generated in the BASIC INT routine [$8CFB]. It
is also used for temporary storage of intermediate values while
performing BASIC AND or OR operations [$4C86],

24

$0D 13

10 $0A ENDCHR
Working storage for various routines
This location is used for several different purposes by a variety
of BASIC routines. It serves as a counter of the number of dig-
its in the ASCII representation of a number during the routine
which interprets the characters as a numeric value [$50A0]. It
holds the value of the character which terminates the search in
the routine which looks for a particular character in a BASIC
program line [$52A2], and in the one that puts a string into
the string pool [$869A]. It is also used for temporary storage of
intermediate values while performing BASIC AND or OR op-
erations [$4C86].

11 $0B TRMPOS
Current screen column for TAB and SPC calculations
The value in this location is used during the portion of the
BASIC PRINT routine [$5554] that handles the TAB and SPC
functions. In the computation of the target column for the TAB
or SPC, this location will hold the current cursor column
value.

12 $0C VERCK
BASIC LOAD/VERIFY flag
The same routine is used to perform both the load and verify
operations, so this flag indicates which is being performed, A
zero value here indicates a load operation, and a nonzero
value indicates verify. The value here is set during the
LOAD/VERIFY [$9129] and DLOAD/DVERIFY [$A1A4]
routines. Both operations use the Kernal LOAD routine
[$F265], which has its own load/verify flag at location
147/$93.

13 $OD COUNT
Working storage for various routines
This location is used for different purposes by several BASIC
routines. It holds the most recently found token during pro-
gram tokenization [$430A]. In the routine that adds or deletes
BASIC program lines [$4DE2], this location holds the length of
the current line. It is also used as a counter in the RREG rou-
tine [$50BD], and as a counter in the subroutines that find or
create array-variable elements.

25

1 4 $0E

14 $0E DIMFLG
Array dimension flag
This location is used during the routines that create array vari-
ables to indicate whether the routines are being called to as
the result of a DIM statement. For a DIM statement, this loca-
tion will contain a nonzero value; otherwise it will be set to
0/$00. This flag is used in testing for the REDIM'D ARRAY
ERROR condition.

15 $OF VALTYP
Variable type flag
This location is used to indicate the type of variable currently
being evaluated. A value of 0/$00 indicates that the variable
is numeric. A nonzero value indicates that the variable is
string type. During the routine that finds or creates a variable
[$7AAF], this location is set to 0/$00 if the variable is numeric
type, or to 255/$FF if it is string type.

16 $10 INTFLG
Numeric variable type flag
If the variable currently being evaluated is numeric (see the
entry for location 15/$0F above), bit 7 of this location will be
used to indicate the numeric type. If that bit is %0, the vari-
able is standard (floating point) type. If the bit is %1 , the vari-
able is integer type. During the routine that finds or creates a
variable [$7AAF], this location will be set to 0/$00 for floating-
point variables or 128/$80 for integer variables.

17 $ 1 1 GARBFL
Working storage for various routines
This location is used for different purposes in several BASIC
routines. During string evaluation, it is used as a garbage-
collection flag. A zero value indicates that no garbage collec-
tion has been performed, while a nonzero value (1/S01)
indicates that garbage collection has taken place. The location
is also used as a quote mode flag during LIST; a value of
0/$00 indicates that quote mode is off, while a nonzero value
(l/$01) indicates that quote mode is in effect. In addition, this
location is used as temporary storage for the high byte of the
disk status variable during the evaluation of the reserved vari-
able DS.

26

$15 2 1

18 $12 SUBFLG
Integer/subscript prohibit flag
This location is used during the routine to find or create a
variable [$7AAF] to specify whether integer or subscripted (ar-
ray) variables are allowed. While the value here is zero, the
variable being evaluated can be of any type. The FOR and
DEF routines store the value 128/$80 here. For FOR, this pre-
vents the use of integer or array variables as loop indexes. For
DEF, this restricts the function definition to floating point vari-
ables and also prevents the parentheses in the function defini-
tion from being interpreted as indicating an array variable.
This location is reset to zero after each variable is evaluated,
and also during CLR [$51F8].

$13 INPFLG19
Input source flag
BASIC uses a common input handling routine [$56B2] for
READ, GET (including GETKEY and GET#), and INPUT (in-
cluding INPUT#). This location is used to indicate which oper-
ation is being performed. The value here will be 152/$98 for a
READ operation, 64/$40 for a GET, or 0/$00 for an INPUT.

20 $ 1 4 TANSGN
Comparison type flag
Tangent sign flag
The value in this location is used during the string and num-
ber comparison routine [$4CB6] to specify the type of compari-
son being performed, A value here of 1 indicates greater than
(>), 2 indicates equal (—), and 4 indicates less than (<). The
values are cumulative, so a test for greater than or equal (> —)
would result in a value here of 3 (1 + 2). This location is also
used during the TAN function routine [$9459] to indicate the
sign of the resulting value.

21 $15 CHANNL
Logical file number for BASIC input and output
The value in this location specifies the logical file from which
BASIC will receive input and to which BASIC will direct out-
put. The default value is 0/$00, which indicates input from
the keyboard and output to the screen. (Logical file 0 is re-
served for the system's use; you cannot open logical file 0.)

27

22-23 $16-$17

Statements which get input or send output to other devices,
such as GET#, INPUT#, and PRINT*, will temporarily change
the value here to the channel number specified in the statement.

The CMD statement can also be used to change the value
here and direct all output to a specified logical file. However,
you can't depend on CMD (or POKEing a value here) to keep
all output flowing to the specified logical file. A number of
other BASIC statements reset the value here to 0/$00 each
time they are executed, restoring default input and output de-
vices. These statements include GET (and GET# and GETKEY),
INPUT#, and PRINT*.

22-23 $16-$ 17 LINNUM
Integer value of ASCII digit string
These are very busy locations, since the routine which reads
ASCII characters from program text and converts the result to
a two-byte line number value [$50A0] stores its results here.
Other routines which manipulate program lines, such as the
one which adds or deletes program lines, will use these loca-
tions to hold the line number. Any statement which reads a
line number, including GOTO, GOSUB, LIST, and so on, will
expect to find the target line number in these locations. The
TRAP destination line number is held here during the ERROR
routine [$4D3C], and the COLLISION target line number is
held here during the GONE routine [$4A9F].

Machine language programmers can store line number
values in these locations, then jump into a BASIC routine at a
point beyond the line number evaluation step. For example, a
machine language program can enter a BASIC program at any
line number by jumping into the GOTO routine with the tar-
get line number in these locations. The following section of
code performs the equivalent of GOTO 100:
LDA #$64 ;Place line number in $16-$17.
STA $16
LDA #$00
STA $17
LDA #$0F ;Bank number for BASIC ROM (15).
STA $02
LDA #$59 ;Enter GOTO routine at $59FB.
STA $03
LDA #$FB
STA $04
JMP $02E3 ;Use JMPFAR to call routine.
28

$24-$25 36-37

24 $18 TEMPPT
Pointer into temporary string descriptor stack
The value in this location points to the next available slot in
the temporary string descriptor stack at 27-35/$lB-$23. This
location can have the following values:
Value Meaning
27/$lB no entries (stack empty)
3O/$1E one entry
33/$21 two entries
36/$24 three entries (stack full)

25-26 $19-$1A LASTPT
Pointer to most recent descriptor stack entry
These locations hold the address of the most recent entry in
the temporary string descriptor stack at 27-35/$lB-$23. Loca-
tion 25/$19 will hold the equivalent of the value in 24/$18
less three, and location 26/$lA will hold zero (it is assigned
this value during the BASIC cold-start sequence). For example,
when there are two entries on the stack, 24/$18 will hold $21,
while these two locations will hold $1E and $00, correspond-
ing to address $001E, the address of the second entry in the
stack.

27-35 $ lB-$23 TEMPST
Temporary string descriptor stack
The three 3-byte entries here hold descriptors (length plus a 2-
byte pointer to the starting address of the string in the string
pool) for strings being evaluated or assembled. For strings be-
ing assigned to variables, the descriptor value generated here
will be transferred to the variable table entry for that string,

36-37 $24-$25 INDEX
Multipurpose address pointer
These locations are used as an address pointer by several
BASIC routines, including the one at 927/$039F, which re-
trieves characters from bank 0 (BASIC program text), and the
one at 951/$03B7, which retrieves characters from bank 1
(BASIC string storage). Numerous BASIC routines call those
character retrieval routines, including the one which inserts or
deletes program lines [$4DE2] and the one which updates
variable tags while making space for a new variable. The

29

38-39 $26-$27

pointer is also used in the LIST routine to read characters from
the keyword table, and in the floating-point routines to copy
floating values to and from the variable storage area in bank
1. In addition, location 36/$24 is used for temporary storage
during formula evaluation, and location 37/$25 is used as a
pointer into the ROM keyword tables when tokenizing pro-
gram lines [$43E2] or listing (detokenizing) program lines
[$5123].

38-39 $26-$27 INDEX2
Multipurpose address pointer
These locations are used as an address pointer by the routine
at 960/$03C0 which fetches characters from BASIC program
text in bank 0. That routine is called by several other BASIC
routines, including the one which adds or deletes program
lines. These locations are also used by the ERROR routine
[$4D3C] as a pointer to the specified error message in the mes-
sage table in ROM.

40-44 $28-$2C RESHO
Temporary storage area for multiplication and division
This area is used to hold intermediate values during the
BASIC routines that perform floating-point multiplication and
division.

45-46 $2D-$2E TXTTAB
Start-of-BASIC-program pointer
The value in these locations points to the first address block 0
RAM used for BASIC program text. The value here is initial-
ized to 7169/S1C01 during the BASIC cold-start sequence. In
the Commodore 64, the value here was initialized to the value
in the Kernal MEMSTR pointer, the bottom of memory estab-
lished during the Kernal reset sequence. However, the 128 al-
ways initializes the same value here, without regard for the
value in MEMSTR (2565-2566/$0A05-$0A06).

The only Kernal routines that change the value here are
the ones that allocate or de-allocate a bitmapped graphics area
for the GRAPHIC statement. When a bitmapped graphics area
is allocated, BASIC program text is moved upward to start at
16385/$4001, above the bitmapped graphics area at 7168-16383/
$1COO-$3FFF. In this case, the values in these pointers will be
adjusted accordingly. The value here will be reset to

30

$31-$32 49-50

7169/$1CO1 when the graphics area is de-allocated and the
BASIC program text is moved back down to its original
position.

During the NEW and RUN routines, the CHRGET pointer
(61-62/$3D-$3E) is initialized with a value one less than the
address in these locations. You can store new values in these
locations to change the starting position of BASIC program
text—for example, if you wish to reserve free memory space in
block 0 RAM below the program. However, two other steps are
required to properly initialize the system to use the new start-
ing position: You must also store the value 0/$00 in the loca-
tion immediately before the address specified here (BASIC
requires that program text be preceded by a zero byte), and
you must perform a NEW to reset other pointers to reflect the
new start-of-BASIC position.

During execution of BASIC'S SAVE and DSAVE routines,
the value here determines the starting address of the data to be
saved.

47-48 $2F-$3O VARTAB
Start-of-variables pointer
The value in these locations points to the first address in block
1 RAM used for scalar (nonarray) variable storage. The value
here is initialized to 1024/$0400 during the BASIC cold-start
sequence, and no other system routine changes that setting.
You can store new values in these locations to change the
starting position of the variable table—for example, if you
wish to reserve free memory space for data storage in block 1
RAM below the variables. However, to properly initialize the
system to use the the new starting position, you must perform
a CLR to reset other pointers to reflect the new start-of-variables
position. During the CLR routine [$51F8] {which is also per-
formed during NEW and BASIC cold start), the start-of-arrays
pointer (49-50/$31-$32) and the end-of-arrays pointer (51-51/
$33-$34) are also set to the value in these locations.

49-50 $31-$32 ARYTAB
Start-of-arrays pointer
The value in these locations points to the first address in block
1 RAM used for the storage of array variables, which is also
one location above the last address used for array variables.
The value here is initialized to the start-of-variables value in

31

51-52 $33-$34

locations 47-48/$2F-$30 during the CLR routine [$51F8]
(which is also performed during NEW and BASIC cold start).

51 -52 $33-$34 STREND
Start-of-free-memory pointer
The value in these locations points to the lowest address in
block 1 RAM available for the storage of strings, which is also
one location above the last address used for array variables.
The value here is initialized to the start-of-variables value in
locations 47-48/$2F-$30 during the CLR routine [$51F8]
(which is also performed during NEW and BASIC cold start).
When the value here equals the value in location 49-50/
$31-$32, no arrays are being used. The function FRE(l) will
return the difference between the value here and the one in
locations 53-54/$35-$36, representing the remaining amount
of memory available for string storage. When the value in
53-54/$35-$36 (the FRETOP pointer) reaches the value here,
garbage collection is performed. If garbage collection cannot
remove enough unused strings to create free space between
the address here and the one pointed to by FRETOP, an OUT
OF MEMORY error occurs.

53-54 $35-$36 FRETOP
Bottom-of-string-space pointer
The value in these locations points to the lowest address in
block 1 RAM used for the string pool. All character strings
used in a BASIC program are stored in the area of block 1 be-
tween the address pointed to in 57-58/$39-$3A and the ad-
dress pointed to here—an area called the string pool. Each
active string here will have a descriptor in the variable array
table areas at the bottom of block 1, or in the temporary de-
scriptor stack at 27-35/$lB-$23. The pool may also contain
inactive strings that the program is no longer using. The value
here is initialized to the top-of-memory value in locations
57-58/$39-$3A during the CLR routine [$51F8] (which is also
performed as part of NEW and the BASIC cold-start sequence).

When the value here equals the value in location
57-58/$39-$3A, no strings have yet been used. Strings are
added from the top of memory downward. When the value
here reaches the value in 51-52/$33-$34, garbage collection is

32

$3B-$3C 59-60

performed to remove inactive strings. If garbage collection
cannot remove enough unused strings to create free space be-
tween the address here and the one in 51-52/$33-$34, an
OUT OF MEMORY error occurs. The function FRE(l) will re-
turn the difference between the value here and the one in lo-
cations 51-52/$33-$34, the amount of free memory remaining
for string storage.

55-56 $37-$38 FRESPC
Temporary pointer into the string pool
These locations are used by the routines that add strings to the
string pool as a pointer to the currently referenced string, and
as a pointer to the current string during the garbage collection
routines.

57-58 $39-$3A MAX_MEM_1
Top-of-memory pointer
The value in these locations determines the highest address in
block 1 RAM available for the string pool. (Actually, the ad-
dress value here will be one location beyond the highest loca-
tion used for the string pool.) The string pool is filled down-
ward from the address specified here. The value in locations
53-54/$35-$36 specifies the address of the bottom of the
pool. When the value in those locations equals the value here,
the pool is empty. The BASIC cold-start routine initializes
these locations to 65280/$FFO0, one location beyond the high-
est contiguous address in block 1 RAM (MMU registers are
seen at 65280-65284/$FF0O-$FFO4 in all memory configura-
tions). You can reduce the value here to reserve memory at
the top of block 1 for other purposes such as data storage.
However, when you change the value here you should also
execute a CLR statement [$51F8] to reset the other string pool
pointers,

59-60 $3B-S3C CURLIN
Current BASIC line number
These locations hold the line number of the BASIC program
line currently being executed. After each program line is exe-
cuted, the routine which executes BASIC program lines
[$4AF3] will load these locations with the number of the next
line to be executed. The value here is used by various other

33

61-62 $3D-$3E

BASIC routines that need to know which line is currently be-
ing executed, The value here is stored in locations 4608-4609/
$1200-$1201 by the routine that processes STOP or END
[$4BCA]. The value stored in those locations will be trans-
ferred back here by the CONT routine [$5A60]. The value
here will be stored in locations 4617-4618/$1209-$120A
when an error is processed by the ERROR routine [$4D3C].
The value in those locations will be transferred back here by
the RESUME routine [$5F62],

61-62 $3D-$3E TXTPTR
Pointer for main BASIC character retrieval routine
These locations serve as the pointer into BASIC text for the
CHRGET routine, BASIC'S primary character retrieval routine.
In earlier Commodore computers, the entire CHRGET routine
was in zero page. The 128's CHRGET is located higher in the
common area, beginning at address 896/$0380, and only the
pointer is kept in zero page. CHRGET is designed to retrieve
the next nonspace character of BASIC text, so the first step in
CHRGET is to increment the address here. The routine also
has an alternate entry point called CHRGOT at 902/$0386,
which retrieves the current character (the one at the address
here) without incrementing the pointer.

The NEW, RUN, and LOAD routines all call the subroutine
[$5254] which initializes this pointer to one byte before the
start-of-BASIC value in locations 45-46/$2D-$2E. Because the
CHRGET routine is so heavily used, many BASIC routines af-
fect the value here. For example, any of the routines which send
the program to another line, such as GOTO, GOSUB, THEN,
and so on, must replace the current value here with the ad-
dress of the target line. The value here is stored in locations
4610-4611/$1202-$1203 by the routine that processes STOP
or END [$4BCA]. The value stored in those locations will be
transferred back here by the CONT routine [$5A60]. The value
here will be stored in locations 4622-4623/$120E-$120F
when an error is processed by the ERROR routine [$4D3C],
The value in those locations may be transferred back here by
the RESUME routine [$5F62].

The value here is also used as a pointer for the alternate
character retrieval routine at 969/$03C9, which fetches the
current text character without CHRGET's test for character type.

34

$43-$44 67-68

63-64 $3F-$40 FNDPNT
Working pointer for various routines
These locations are used as a working pointer into the runtime
stack at 2048-2559/$0800-$09FF by the routines that search
for tokens in the stack. The RENUMBER routine [$5AF8] uses
these locations as an end-of-program pointer. The PRINT
USING routine [$9520] uses the routine at 939/$03AB (which
uses these locations as a pointer) to retrieve characters from
the template pattern string in block 1 RAM.

65-66 $41-$42 DATLIN
Line number of current DATA statement
These locations hold the line number of the BASIC program
line containing the DATA statement from which DATA items
are currently being read. These locations are updated by the
subroutine that searches for the start of the next DATA state-
ment: [$57CA], called during execution of the READ state-
ment. The value here isn't used by any system routine, but it
can be very helpful when you're debugging a program con-
taining DATA statements. Whenever a program stops with an
ILLEGAL QUANTITY or TYPE MISMATCH error message in
a line containing a READ statement, it's very likely that the
error is actually in the DATA line rather than the line speci-
fied in the error statement (the one which contains READ).
You can find the line number from which the last, possibly er-
roneous, DATA item was read using PRINT PEEK(65) + 256
* PEEK(66).

67-68 $43-$44 DATPTR
Pointer to next DATA item
These locations are used as a pointer to the address at which
the search for the next available DATA item will begin. The
subroutine that searches for the next DATA item [$57CA],
called during execution of the READ statement, will update
the value here to point to the start of the next DATA item.
The RESTORE statement, when used without a line number
parameter, resets the value here to the starting address of
BASIC program text (from locations 45-46/$2D-$2E), That
RESTORE subroutine is also called as part of the CLR routine,
which in turn is called as part of RUN. Thus, the search for
DATA items normally begins at the first program line. The

35

69-70 $45-$46

RESTORE statement can be used with a line number param-
eter to change the value here. In that case, the pointer value
will be reset to the starring address of the specified line. The
specified line need not contain a DATA statement. It merely
specifies the line from which the search for the next DATA
statement will begin.

69-70 $45-$46 INPPTR
Text pointer for input
The common input routine [$56B2], used in the execution of
the GET, GETKEY, GET#, INPUT, INPUT*, and READ state-
ments, uses these locations as a pointer to the characters to be
read as input. The value here will be transferred into the
CHRGET pointer at 61-62/$3D-$3E so that CHRGET can be
used to retrieve characters from the input. The GET, GETKEY,
and GET* statements will initialize the value here to
513/$0201, an input buffer location set to 0/$00 to cause the
input routine to read the next character. The INPUT and IN-
PUT* statements will initialize the value here to 511/$01FF, a
location immediately before the input buffer set to 44/$2C,
the code for the comma character. The actual input will be in
the input buffer beginning at 512/$0200. The READ statement
will initialize these locations with the starting address of the
next DATA item (from locations 67-68/$43-$44).

71-72 $47-$48 VARNAM
Current variable name
These locations are used during the routine to find or create a
variable [$7AAF] to hold the compressed (two-byte) form of
the specified variable name. This compressed form will then
be used as a search pattern to check whether a variable of the
same name and type currently exists. If not, the characters
here will be used as the name for the new variable.

73-74 $49-$4A VARPNT
Pointer to variable descriptor
These locations are used as a pointer to the first byte of the
descriptor for the variable—the address of the location just be-
yond the two-character name in the variable table entry for
the variable. The value here is set upon exit from the routines
to find [$7AAF] or create [$7B90] a variable. The FN (user-

36

$ 4 F 7 9

defined function) routine will load these locations with the ad-
dress of the descriptor for the dummy variable in the function
definition,

75-76 $4B-$4C FORPNT
Variable descriptor pointer and working storage
These locations are used during the routine that assigns vari-
able values (LET [$53C6]) as a pointer to the variable value or
string descriptor. For numeric variables, the address here will
be the location in block 1 RAM where the value will be
stored. For string variables, the address here will be the loca-
tion in block 1 RAM where the length and pointer into the
string pool for the string will be stored. The FOR statement
uses the value here to find the address of the value for the
loop index variable.

For the WAIT statement [$6C2D], location 75/$4B holds
the test byte pattern and location 76/$4C holds the mask byte
pattern. Location 75/$4B is also used as an index into the cur-
rent line during the routine to list BASIC program lines [$5123],

77-78 $4D-$4E VARTXT
Temporary storage for text pointer
These locations are used for temporary storage for the
CHRGET pointer value from 61-62/$3D-$3E during the com-
mon input routine [$56B2], which uses CHRGET to retrieve
characters from the input source location. Location 77/$4D is
also used during the numeric expression evaluation routine
[$77EF] as a flag to indicate when the end of the expression
has been reached.

79 $4F OPMASK
Relational operator flag
When the main expression evaluation routine [$77EF] finds a
relational operator (<, =, or >) in the current expression, it
stores a value here indicating which operator has been found.
For greater than (>) operations, the value here will be 1. For
equals (=), the value will be 2; for less than (<) it will be 4.
When the expression is evaluated, this value will be trans-
ferred to location 20/$14.

37

80-81 $50-$51

80-81 $5O-$S1 DEFPNT
Defined function pointer and working pointer
These locations are used by the routine that retrieves bytes
from the variable table entry for a function definition (FN).
That routine [$42CE] uses these locations as a pointer for one
of the bank 1 character retrieval subroutines [$03AB]. These
locations are also used as a working pointer by one of the
routines that reads values during garbage collection. That rou-
tine [$42FB] also uses a bank 1 data retrieval subroutine [$03AB].
The routine that allocates the bitmapped graphics area [$9F4F]
uses these locations to hold the number of bytes that must be
moved upward to make room for the graphics area.

80-84 $50-$54 TEMPF3
Temporary storage for floating-point value
These locations are used to temporarily hold the floating-point
value of the exponent during the routine to handle the ex-
ponentiation (T) operator [$8FC1].

82-83 $52-$53 DSCPNT
Variable address storage and working pointer
The routine that creates space in the string poo] for a new string
variable uses these locations to temporarily store the address
of the variable table entry. These locations are also used as a
pointer by the routine that retrieves characters from the string
poo] for the LEFT$, RIGHT$/ and MID$ functions [$42D8].

$55 HELPER85
HELP flag
Bit 7 of this location is tested in the routine which lists BASIC
program lines [$5123] to determine whether the line is being
displayed by LIST or by HELP. When the bit is % 1 , the sub-
routine at 22956/$59AC will be called to highlight the portion
of the line where the most recent error occurred. The HELP
statement routine [$5986] sets bit 7 to %1 before it calls the
line-listing routine, and clears it to %0 afterwards.

86-88 $56-858 JMPER
BASIC function execution vector
This vector is used to execute the routines that handle BASIC
functions. Location S6/$56 is initialized during the BASIC

38

$5D-̂ $5F 93-95

cold-start sequence with the value 76/$4C, the 8502 JMP
opcode. The function dispatch routine [$4BF7] loads 87-88/
$57-$58 with the address of the routine that performs the de-
sired function operation. A JSR $0056 instruction then exe-
cutes the function-handling routine.

89-93 $59-$5D TEMPF1
Floating-point work area
These locations are used as a temporary floating-point work
area during the series evaluation routine [$9086] for the LOG,
SIN, COS, TAN, and ATN functions. Location 89/$59 is also
used for temporary storage during the routine [$9D7C] which
subtracts the contents of one pair of bitmapped graphics stor-
age locations from the contents of another pair of locations.

90-91 $5A-$5B ARRYPNT
Multipurpose working pointer
These locations are used as a pointer to the destination of text
being moved in the routine to add new BASIC program lines
to memory [$4DE2] and as a pointer into array space when
making room for a new variable [$7B90]. They are also used to
hold the line link value during RENUMBER [$5AF8].

92-93 $5C-$5D HIGHTR
Multipurpose address pointer
These locations serve as a pointer for the routine that reads
the source text being moved in the routine to add new BASIC
program lines. This routine [$42DD] uses one of the common
bank 0 character retrieval routines [$039F]. The locations serve
as a pointer in the routine to read source bytes when creating
space for new variables. This routine [$42E2] uses one of the
common bank 1 character retrieval routines [$03AB]. The loca-
tions are used during the RENUMBER routine [$5AF8] to hold
the number of the line currently being renumbered.

93-95 $5D-$5F STR1
String length and pointer for MID$
When MID$ is used as a statement [$5901] (to add characters
to a string), these locations hold the descriptor of the original
string. Location 93/$5D holds the length, and locations
94-95/$5E-$5F hold the address and are used as a pointer.

39

94-98 $5E-$62

94-98 $5E-$62 TEMPF2
Temporary storage for floating-point value
These locations are used to store an intermediate value from
floating-point accumulator #1 (FAC1) during the series evalua-
tion routine [$909C] for the EXP function.

94-95 $5E-$5F
Working pointer for garbage collection
These locations are used as a pointer to the tag bytes for the
current string during the routine that performs string pool gar-
bage collection [$92EA].

95 $5F DECCNT
Decimal point position
This location is used during the routine [$8E42] that creates a
character string representing the value in floating-point accu-
mulator #1 (FAC1) to hold the position within the string for
the decimal point. The location is also used as a loop counter
in the routine [$7E3E] to calculate the amount of memory
needed for an array.

96-98 $60-$62 STR2
Substring length and pointer for MID$
When MID$ is used as a statement [$5901] (to add characters
to a string), these locations hold the descriptor of the substring
to be added. Location 96/$60 holds the length, and locations
97-98/$61-$62 hold the address and are used as a pointer.

96-104 $60-$68 T0-T2
Monitor zero-page pointers and working storage
These locations are used by many routines in the monitor. The
monitor routine [$B7CE] that determines the numeric value of
a parameter in the input buffer leaves the value in locations
96-98/$60-$62 (in low- to high-byte order), so any numeric
value in a monitor command is at least initially held there. For
monitor commands that accept two or more address param-
eters, the first address is transferred into locations 102-104/
$66-$68, and the value there is then used as a working
pointer to the byte to be read or written. (The monitor's indi-
rect fetch [$B11A], indirect store [$B12A], and indirect compare
[$B13D] routines use 102-103/$66-$67 for the address pointer

40

$63-$67 99-103

and 104/S68 for the bank value.) The starting address is sub-
tracted from the ending address, and the result is transferred
to 99-101/$63-$65. The value in those locations is then used
as a count of bytes to be affected by the operation. The
compare/transfer routine [$B231], which accepts three address
parameters, uses 102-104/$66-$68 as the pointer to the
source address for the compare or transfer and 96-98/$60-$62
as the pointer to the destination address.

Some monitor routines also make alternate use of some of
these locations. The memory display routine [$B152] uses
96-98/$60-$62 as a count of lines to be displayed. During as-
sembly [$B406], 99/$63 holds the length of the current in-
struction, and location 100/$64 holds the addressing mode
type. Locations 99-100/$63-$64 are used to unpack mnemon-
ics during disassembly [$B6A1], and 99/$63 serves as a
counter during directory display [$BB03].

97-98 $61-$62 LOWTR
Multipurpose address pointer
A wide variety of BASIC routines use these locations as a
pointer. They serve as the pointer for a heavily used routine
[$42EC] to read characters from BASIC program text. (That
routine uses one of the common bank 0 character retrieval
subroutines [$039F].) The routine is called by the routine
which adds or deletes program lines [$4DE2], the one which
searches for a line number [$5064] (in which case the starting
address of the line is returned in these locations), LIST
[$50E2], and DELETE [$5E87]. These locations also serve as
the pointer for a routine [$4300] to read values from the vari-
able table. (That routine uses one of the common bank 1 char-
acter retrieval subroutines [$03AB].) The routine is called by
the routine [$7AAF] which searches the variable table to check
whether a variable with a specified name already exists, and
the one [$7CAB] which performs a similar search for array
names. If an existing name is found, the address of the table
entry for the variable or array will be returned in these
locations.

99-103 $63-$67 FAC1
Floating-point accumulator 1
These locations are the primary work area for all routines
which use floating-point math, which includes all of BASIC'S

41

104 $68

mathematical functions. Any numerical value used in a BASIC
program will be converted to a floating-point value here for
further processing. The result of any BASIC operation which
performs a numerical calculation will be held in these locations.

Floating-point notation is rather complicated. This method
of representing numbers has three components: the mantissa,
the base, and the exponent. You may be familiar with BASIC'S
scientific notation. For example, the value 73,500 will be rep-
resented as 7.35E4, BASIC'S shorthand for 7.35 X 104. In this
format, the 7.35 is the mantissa, the 10 is the base, and the 4
is the exponent. In BASIC'S internal floating-point format, the
base value is 2; location 99/$63 holds the exponent, and loca-
tions 100-103/$64-$67 hold the mantissa. The exponent is
held in excess-128 format, meaning that 129 has been added
to the exponent value. (This is a little trick to avoid having to
deal with negative exponents.) To get the true exponent value,
subtract 129. Only the lower 31 bits of the four-byte mantissa
value are used, and the mantissa is normalized—adjusted so
that its value is always effectively in the range 1-1.9999.
Thus, the formula for converting the FAC1 contents into a
decimal value is:

value = (1 + (mantissa / (2 T 31))) * 2 t (exponent - 129)

The routine which converts the contents of FAC1 into a
two-byte integer value will leave the results of the conversion
in locations 102-103/$66-$67. Some routines which don't use
floating-point math use these locations for other purposes. Lo-
cations 102-103/$66-$67 are used as a pointer by the routine
[$42E7] that reads values from the variable table. That routine
uses one of the common bank 1 character retrieval subroutines
[$03AB].

$68 FACSGN104
Sign of FAC1
Bit 7 of this location is used to indicate the sign of the value in
FAC1. The value here will be 0/$00 for positive values in
FAC1 and 255/$FF for negative values. As long as the floating-
point value is held in the accumulator, this location will be
used to indicate its sign. When the floating-point value is
stored in a variable, the setting of this bit will be copied to the
highest bit of the mantissa. Likewise, when a value is copied
from a variable into the accumulator, the setting of bit 7 of the
most significant byte of the mantissa is copied here.

42

$70-$71 112-113

1OS $69 SGNFLG
Sign flag during conversion
Count of terms in series evaluation
This location is used as a flag during the routine [$8D22] that
calculates the floating-point value equivalent of a string of
digit characters to indicate whether the string being converted
has a leading negative sign. During the series evaluation rou-
tine [$909C], this location holds the number of terms in the
series.

106-110 $6A-$6E FAC2
Floating-point accumulator 2
These locations are the second floating-point accumulator area,
used in those operations that require a second floating-point
value. Location 106/$6A is the exponent and locations 107-110/
$6B-$6E are the mantissa. All operations that involve both ac-
cumulators will transfer the results to FAC1.

$6F ARGSGN111
Sign of FAC2
Bit 7 of this location indicates the sign of FAC2, just as loca-
tion 104/$68 does for FAC1.

1 1 2 $ 7 0 ARISGN
Sign comparison flag
The routines that load values into FAC1 [$8A89] and FAC2
[$8AB4] perform an exclusive-OR of the values in locations
104/S68 and 111/$6F—the signs of the values in the respec-
tive floating-point accumulators. Thus, this location will hold
0/$00 if both signs are positive or both are negative, or 255/
$FF if the signs are different.

112-113 $70-$71 STRNG1
Multipurpose address pointer
These locations are used as an address pointer by the routine
[$42F1] which loads characters from strings in BASIC program
text for transfer into the string pool. (That routine uses a com-
mon bank 0 character retrieval subroutine [$039F].) The loca-
tions are also used as a pointer by the routine [$42F6] that
reads characters from the first string in a concatenation opera-
tion. (That routine uses a common bank 1 character retrieval
subroutine [$03AB].)

43

113 $71

113 $71 FACOV
Rounding flag for FAC1
When a pair of floating-point mantissas are adjusted for a
math operation, any extra bits that must be shifted out of the
smaller mantissa are held here and used to round the final re-
sult to extend the accuracy of the operation.

114-115 $72-$73 STRNG2
Multipurpose address pointer and working storage
In the series evaluation routine, these locations are used as a
pointer to the constant values used in the series evaluation. In
the VAL routine [$804A], these locations are used as a pointer
into the character string to be translated into a floating-point
value. These locations are used as working storage in the
routines that calculate the amount of memory required for an
array. In the DEC routine [$8072], these locations are used as
a work area for converting the hexadecimal string characters
into a two-byte integer value.

116-117 $74-$75 AUTINC
Step value for autoincretnent
These locations hold the step value for automatically incre-
menting the line number if autoincrement mode is active.
After each BASIC program line is entered while this mode is
active, the value here will be added to the previous line num-
ber and the resulting new line number will be printed on the
screen. Autoincrement mode will be active whenever these lo-
cations contain a nonzero value. These locations are reset to
0/$00 during the BASIC cold-start sequence, and during the
RUN subroutine [$5A81] that resets flags. The value here can
be set using the AUTO statement.

118 $76 MVDFLG
Graphics area flag
The value here indicates whether the bitmapped graphics
color and screen area has been allocated at 7168-16383/
$1COO-$3FFF, in which case the start of the BASIC program
area will have been moved to 16384/$4000. A value of 0/$00
here indicates that no graphics area is allocated, while a non-
zero value indicates that the area has been allocated and the
BASIC program area has been moved. This location is initial-

44

$7A-$7C 122-124

ized to 0/$00 (no graphics area) during the BASIC cold-start
sequence. When the graphics area is allocated, this location is
decremented (to 255/$FF). The only BASIC statement that re-
sets this location is GRAPHIC CLR-—the value here isn't af-
fected by NEW or CLR—so once a graphics area is allocated it
will remain allocated until the computer is reset or a GRAPHIC
CLR statement is executed.

119 $77 Z_P_TEMP_1
General-purpose working storage
This location is used for temporary storage by a variety of
BASIC routines.

120 $78 HULP
String offset pointer
This location is used during the routine [$5901] that handles
MID$ as a statement to hold the offset from the start of the
string to the substring being replaced. It's also used during the
PLAY string-processing subroutine [$6DE1] to hold the offset
to the next character waiting to be processed in the string.

121 $ 7 9 SYNTMP
Multipurpose temporary storage
This location is used for temporary storage by a number of
different BASIC routines.

1 2 2 $7 A MTXTPTR
Index into input buffer for monitor
The monitor uses this location to store the position of the
next character to be read from the input buffer (512-672/
$0200-$02A0).

122-124 $7A-$7C DSDESC
Descriptor for disk error string DS$
These locations are used as the descriptor for the disk status
string provided by the reserved variable DS$. Location
122/$7A will hold the length of the string, and locations
123-124/$ 7B-$7C will hold the address of the string. The
length value is initialized to 0/$00, effectively emptying the
string, during the CLR routine [$51F8], which is also part of
NEW and RUN, The routine to generate the error string
[$A778] will set the values here whenever the DS or DS$ vari-
ables are used.

125-126 $7D-$7E

125-126 $7D-$7E TOS
BASIC runtime stack pointer
These locations are used as the pointer into the BASIC
runtime stack at 2048-2559/$0800-$09FF. This stack area is
used to hold information for FOR, GOSUB, and DO state-
ments (see Chapter 3 for details). The value here is the ad-
dress of the next free location in the stack, which is filled from
top to bottom—from 2559/$09FF down to 2048/$0800.
Unlike the processor's stack with its automatic pointer, the
pointer into this stack must be updated explicitly. The pointer
value is reset to 2559/S09FF during the CLR routine [$51F8],
which is also part of NEW and RUN. Each time an entry is
placed on the stack, the pointer value here is decremented by
the number of bytes in the stack entry. Whenever an entry is
retrieved from the stack, the value is incremented by the num-
ber of bytes to be removed.

$7F RUNMOD127
RUN mode flag
This location is used to indicate the current operating mode of
the computer. When the value here is 0/$00, BASIC is in im-
mediate mode. No program is executing; BASIC is waiting for
a command or a program line to be entered. When bit 6 is set
to %1 (flag value of 64/$40), a program is being loaded for
execution (the RUN "filename" statement has been used).
When bit 7 is set to %1 (flag value 128/$80), a BASIC pro-
gram is being executed. The value here is reset to 0/$00 dur-
ing the step of the main BASIC loop that displays the READY
prompt. The RUN subroutine [$5A81] to set flag values will
set this location to 128/$80, unless the option to load and run
a disk file has been used. In that case, the flag will be set to
64/$40 while the file is loading, then to 128/$80 when it be-
gins running.

128 $80 POINT
Decimal point position
This location is used during the PRINT USING routine [$9] to
hold the number of digits to be printed before the decimal
point.

46

$83 131

128-129 $80-$81 PARST
Parameter flags for DOS support commands
The various disk command routines set these locations before
calling the routine [$A32F] that processes parameters for disk
commands. The values here indicate which parameters are
valid for the command being processed. When a bit is % 1 , the
parameter string for the command can include the correspond-
ing element:
Location Bit Parameter element
128/$80 0 source filename

1 destination filename (following TO)
2 logical file number (#)
3 device number (U)
4 source drive number (D)
5 destination drive number (D following TO)
6 file type parameters (L or W)
7 save-with-replace indicator (@)

129/$81 0 bank number <B)
1 starting address (P)
2 ending address (P following TO)

130 $82 OLDSTK
Storage for processor stack pointer
This location is used to store the current processor stack
pointer value before a BASIC program line is executed
[$4AF3]. If an error occurs while the line is being executed, the
value here will be restored to the stack pointer during the
error-handling routine [$4D3C],

131 $83 COLSEL
Color source for current graphics command
The first parameter in graphics commands such as DRAW,
CIRCLE, BOX, and so on, is the color source number. That
value is held here after the parameter is evaluated. For the
standard bitmapped (GRAPHIC 1) screen, valid values are 0
(background) and 1 (foreground). For multicolor bitmapped
(GRAPHIC 3) screens, values of 2 and 3 are also valid to se-
lect the additional multicolor sources. If the parameter is omit-
ted, the value here will default to 1 (foreground).

47

132 $84

132 $84 MULTICOLOR_1
Color source 2 storage
This location holds the current color number for color source
2. The value here doesn't have any immediate effect on the
screen display, but whenever the COLOR statement routine
[$69E2] is executed, the lower four bits of the value here will
be copied into the lower four bits of the multicolor video ma-
trix fill byte at 995/$03E3. That value will be used to fill the
video matrix area when the multicolor bitmapped (GRAPHIC
3) screen is cleared. Thus, the value here eventually deter-
mines the color of multicolor bitmapped pixels represented by
%10 bit pairs. This is the bit pattern that will be produced for
lines drawn when color source 2 is specified. During the
BASIC cold-start sequence, this location is initialized to 1
(white). The value here can be changed using the statement
COLOR 2,n, where n is a standard BASIC color number
(1-16). Remember that the color change is effective only after
the multicolor bitmapped screen is cleared.

133 $85 MULTIC0L0R-2
Color source 3 storage
This location holds the current color number for color source
3. The value here doesn't have any immediate effect on the
screen display, but whenever the bitmapped screen is cleared,
block 0 of color memory (55296-56319/$D800-$DBFF) is
filled with the value here. Thus, the value here eventually de-
termines the color of multicolor bitmapped pixels represented
by %11 bit pairs. This is the bit pattern drawn for lines when
color source 3 is specified. During the BASIC cold-start se-
quence, this location is initialized to 2 (red). The value here
can be changed using the statement COLOR 3,Ji, where n is a
standard BASIC color number (1-16). Remember that the color
change is effective only after the multicolor bitmapped screen
is cleared.

134 $ 8 6 FOREGROUND
Current foreground color (source 1) storage
This location holds the current color number for color source
1. The value here doesn't have any immediate effect on the
screen display, but whenever the COLOR statement routine
[$69E2] is executed, the lower four bits of the value here will
be copied into the upper four bits of both the standard video

48

$89-$8A 137-138

matrix fill byte at 994/$03E2 and the multicolor video matrix
fill byte at 995/$03E3. One of these values, depending on the
display mode, will be used to fill the video matrix area when
the bitmapped screen is cleared. Thus, the value here eventu-
ally determines the color of standard bitmapped pixels repre-
sented by %1 bits or of multicolor bitmapped pixels represented
by %10 bit pairs. During the BASIC cold-start sequence, this
location is initialized to 13/$0D (light green). The value here
can be changed using the statement COLOR \,n, where n is a
standard BASIC color number (1-16). Remember that the color
change is effective only after the screen is cleared.

135-136 $87-$88 SCALE_X
Horizontal scaling factor
These locations hold the horizontal scaling factor for BASIC
graphics routines. If scaling is in effect (indicated when the
scaling flag at 4458/$116A holds a nonzero value), the speci-
fied horizontal (x) coordinates for all graphics routine param-
eters will be adjusted according to the value here to get the
true bitmap coordinates. The value here can be changed using
the SCALE statement. If the first parameter in the statement is
1 (scaling on), the factor here is calculated from the second pa-
rameter according to the following formula:
scaling factor = (65535 * 320)/scaling parameter
If the parameter is omitted, a default value of 20480/$5000
(for a bitmapped screen) or 10240/S2800 (for a multicolor bit-
mapped screen) is supplied. This allows a scaled screen of
1024 horizontal positions (x coordinates 0-1023).

137-138 $89-$8A SCALE-Y
Vertical scaling factor
These locations hold the vertical scaling factor for BASIC
graphics routines. If scaling is in effect (indicated when the
scaling flag at 4458/$116A holds a nonzero value), the speci-
fied vertical {y) coordinates for all graphics routine parameters
will be adjusted according to the value here to get the true bit-
map coordinates. The value here can be changed using the
SCALE statement. If the first parameter in the statement is 1
(scaling on), the factor here is calculated from the third param-
eter according to the following formula:
scaling factor = (65535 * 200)/scaling parameter

49

139 $8B

If the parameter is omitted, a default value of 12800/13 200 is
supplied. This allows a scaled screen of 1024 vertical positions
(y coordinates 0-1023).

$8B STOPNB139
PAINT mode flag
Bit 7 of this location is used during the PAINT statement rou-
tine [$61A8] to specify whether the fill stops at pixels where
the source color is encountered (indicated when the bit is %0)
or whether all nonbackground pixels will be filled (indicated
when this bit is %1). This location is normally set according to
the fourth parameter of the PAINT statement, to 0/$00 if the
parameter is 0 or omitted, or to 128/$80 if the parameter is 1.

140-141 $8C-$8D GRAPNT
Address pointer for graphics routines
These locations are used as an address pointer by several
BASIC graphics routines. The value here points to the address
within the bitmap where a character pattern will be copied
during CHAR [$67D7]. The locations serve as a pointer to the
area being filled during the SCNCLR [$6A79]. In the general
pixel-drawing routine, these locations point to the bitmap ad-
dress where the pixel will be drawn.

142-143 $8E-$8F VTEMP
Temporary storage for graphics routines
These locations are used for temporary storage by a variety of
BASIC graphics routines.

144 $90 STATUS
Status flag for tape and serial bus operations
This location records the status of the most recent tape or se-
rial bus operation. In general, when the operation has been
successful the value here is 0/$00, while a nonzero value indi-
cates that an error has occurred or that the end of the file has
been reached. The value here is reset to zero at the beginning
of any load or save, or whenever a file is opened to tape or a
serial device. Various error conditions are indicated by setting
particular bits to % 1 . The bits are used as follows:

50

$91 145

Bit
0
1
2

Bit value
l/$01
2/S02
4/$04

8/$08

16/$10

32/$20
64/$40

128/$80

Serial bus
timeout during write
timeout during read

mismatch during
verify

Tape

short block
(leader read where data expected)
long block
(data read where leader expected)
unrecoverable read error
{or mismatch during verify)
checksum mismatch for block
end-of-file marker read
end-of-tape marker read

EOI (end of file)
device not present

In BASIC, the reserved variable ST returns the value here
when the current I/O device is tape (1) or serial (4 or larger).
For RS-232 operations, the status is instead recorded in loca-
tion 2580/S0A14.

145 $ 9 1 STKEY
Scan value of STOP key column
This location holds the current status of the keyboard column
containing the RUN/STOP key. The Kernal UDTIM routine
[$F5F8], which is part of the system jiffy IRQ sequence, in-
cludes a section which reads the current column of the key-
board matrix. (See Figure 7-1 in Chapter 7 for a diagram of
the keyboard matrix.) The current state of that column is
stored in this location (unless the key connected to row 7 of
the column has been pressed at the same time as some key in
columns 1 or 6, which contain the SHIFT keys). The proper
functioning of this routine depends on the fact that the
SCNKEY routine [$C55D], normally performed earlier in the
IRQ sequence, leaves the system set to scan column 7, the one
containing the RUN/STOP key (in row 7). When the Kernal
STOP routine [$F66E] is called to determine whether the
RUN/STOP key is currently pressed, it checks this location
rather than actually reading the keyboard.

This location can also be used to read any of the other
keys in column 7. The value here will be 255/$FF when no
key in that column is pressed. Pressing a key sets a cor-
responding bit here to %0. The values here when the respec-
tive keys are pressed are as follows:

Key

*-
CONTROL
2

Bit
0
1
2
3

Value
254/$FE
253/$FD
251/$FB
247/$F7

Key
space
Commodore
Q
RUN/STOP

Bit
4
5
6
7

Value
239/$EF
223/$DF
191/$BF
127/$7F

51

146 $92

146 $92 SVXT
Tape-timing baseline adjustment factor
This location is used during routines which read from tape to
hold a value representing the difference between the actual
time required to read a bit from tape and the standard rime.
This value is used to adjust other timing constants to compen-
sate for minor variations in tape motor speeds.

1 4 7 $ 9 3 VERCK
Kernal load/verify flag
Monitor operation flag
The same Kernal routine is used to perform both load and ver-
ify operations. This location is used during the routines which
read data from tape and disk to specify which operation has
been called for. The value in the accumulator upon entry to
the Kernal LOAD routine [$F265] will be stored here.

The monitor compare/transfer routine [$B231] uses this
location as an operation flag. A value of zero here indicates
that a compare operation is being performed, while a value of
128/$80 indicates a transfer operation. The monitor byte-pattern
search routine [$B2CE] stores the number of characters in the
search buffer here. The monitor load/save/verify setup rou-
tine stores the character code of the current command (L, S, or
V) here.

148 $94 C3P0
Serial deferred character flag
This location is used to indicate whether a character is waiting
in the one-byte character buffer at 149/$95. Bit 7 of this loca-
tion will be %0 if no character is waiting, or %1 if the buffer
contains a byte awaiting transmission.

149 $95 BSOUR
Serial character buffer
This location is used as a buffer for bytes sent over the serial
bus. The operating system maintains this buffer so that the
last byte of a file can be sent with the EOI handshake to iden-
tify it as the final byte. Location 148/$94 is used to indicate
whether the current value here represents a character awaiting
transmission. It's very important to close serial bus files
opened for writing; otherwise, the final byte with the end-of-
file handshake won't be sent.

52

$9A 154

150 $96 SYNO
Cassette block synchronization count
This location is used during routines which read from tape to
indicate when the system has read leader bytes and is waiting
for the end of the leader segment.

151 $97 XSAV
Temporary register storage
This location is used for temporary storage of the Y register
value during the Kernal GETIN subroutine for RS-232, and for
temporary storage of the X register value during the Kernal
BASIN routine for tape.

152 $98 LDTND
Number of files currently open
This location records the number of active files—the number
of files which have been opened but not yet closed. This value
also serves as an index to the next available entry in the logi-
cal file number, device number, and secondary address tables
at 866-895/$0362-$037F. The value here is reset to 0/$00 (no
files open) when zero page is cleared during the reset se-
quence. The Kernal CLALL routine [$F222] will also reset this
location to 0/$00. The value here is incremented each time a
logical file is opened, and decremented each time one is
closed. An attempt to open an additional file when this loca-
tion contains 10/$0A, indicating that the maximum 10 files
are already open, will result in a TOO MANY FILES error.

153 $99 DFLTN
Current input device
The value here specifies the current input device number for
the Kernal GETIN and BASIN routines, When a logical file is
selected for input by the CHKIN routine, the device number
value for the file is read from that file's entry in the device
number table at 876-885/$036C-$0376 and stored here. The
CLRCH routine will reset the value here to 3/$03, to make
the keyboard the default input device.

154 $9A DFLTO
Current output device
The value here specifies the current output device number for
the Kernal BSOUT routine. When a logical file is selected for

53

155 $9B

output by the CKOUT routine, the device number value for
the file is read from that file's entry in the device number ta-
ble at 876-885/$036C-$0376 and stored here. The CLRCH
routine will reset the value here to 0/$00, to make the screen
the default output device.

155 $9B PRTY
Tape character parity
This location is used during routines which read from tape to
calculate the parity of the byte currently being read. Bytes
stored on tape have an extra parity bit added to make an odd
total number of %1 bits in the combined character (eight data
bits plus parity). This location is used to make sure that an
odd total number of bits is read back for each character.

156 $9C DPSW
Tape dipole received flag
This location is used when a byte is being read from tape to
indicate whether all bits of the byte have been received (indi-
cated by a nonzero value), or whether bits are still being read
(indicated by a value of 0/$00).

157 $9D MSGFLG
Kernal message control flag
This location controls whether Kernal messages will be dis-
played. The Kernal routines have two types of messages: con-
trol messages (PRESS PLAY ON TAPE, SEARCHING FOR,
and so on) and error messages (I/O ERROR # followed by a
number). This location controls which types of messages, if
any, will be displayed. When the value here is set to 0/$00,
no Kernal messages are displayed. Setting bit 6 to %1 enables
error messages, while setting bit 7 to %1 enables control mes-
sages. The value here can be set using the Kernal SETMSG
routine [$F75C]. The BASIC routine MAIN [$4DB7], which is
responsible for the READY prompt, sets this flag to 128/$80
(control messages only), since BASIC provides its own error
messages. When the RUN routine is executed to run a pro-
gram, the value here is reset to 0/$00 (no messages). The
monitor changes the setting to 192/$C0 (all messages).

54

$A0-$A2 160-162

158 $9E PTR1
Tape pass 1 error-log pointer
The Commodore tape system records two copies of each block
of data written to tape. If errors are detected while the first
copy is being read, the address where the erroneous byte is lo-
cated is stored in the tape error-log area at the bottom of page
1, This location is used as an offset to the next available two-
byte address slot in the error log. The value here is reset to
0/$00 at the beginning of the operation. An unrecoverable er-
ror occurs if the value here exceeds 60/$3C, indicating that
more than 31 errors have been logged.

This location is also used to hold the offset into the speci-
fied filename during the routine which checks to determine
whether a particular tape header has been found, and for tem-
porary storage of the type identifier byte when header blocks
are being written to tape.

159 $9F PTR2
Tape pass 2 error-log pointer
This location is used during the routine which reads the sec-
ond copy of each tape data block to indicate the offset to the
next slot in the tape error log. That slot will contain the ad-
dress of the next byte that needs correcting in the second pass.
This location is also used to hold the offset into the filename
in the tape header when the routine is checking whether a
particular tape header has been found.

The monitor assemble routine [$B406] also uses this
location to store the position of the next character to be pro-
cessed from the instruction address buffer (2720-2729/
$OAA0-$0AA9).

160-162 $A0-$A2 TIME
Software jiffy clock
These three bytes comprise the jiffy clock, a counter main-
tained by the operating system. Location 160/$A0 is the high
byte, 161/$A1 the middle byte, and 162/$A2 the low byte.
The UDTIM routine [$F5F8], called during each system jiffy
IRQ interrupt sequence, will increment this counter 60 times
per second. (UDTIM checks and compensates for PAL video

55

163 $A3 $A6 166

systems, so these locations are incremented 60 times per sec-
ond regardless of whether interrupts occur at the North Amer-
ican rate of 60 times per second or the European rate of 50
times per second.) Thus, location 162/$A2 will be incre-
mented every 1/60 second; location 161/$A1 every 1/60 *
256 = 4.27 seconds; and location 160/$A0 every 4.27 * 256
= 1092 seconds, or every 18.2 minutes. All three locations
(along with the rest of zero page) are reset to 0/$00 during
the reset sequence. The UDTIM routine will also reset the lo-
cations to 0/$00 if the value here reaches $4F1AO1, cor-
responding to 24 hours after the start of the count. The Kernal
RDTIM routine [$F65E] can be used to read these locations,
and the SETTIM routine [$F665] can be used to change the
value here. From BASIC, the reserved variables TI and TI$ can
be used to read the values here (TI$ converts the value to
hours:minutes:seconds format). TI$ can also be used to change
the value here.

Although this timer is easy to use, especially from BASIC
with TI and TI$, it's not particularly accurate for timekeeping
applications. These locations depend on the system IRQ inter-
rupt, which is affected by a number of operations. For ex-
ample, the system interrupt is turned off during loads and
saves to tape or disk, effectively stopping the clock. The more
tape or disk operations you perform, the more inaccurate your
clock time becomes. If you need more reliable timekeeping, re-
fer to the discussion of the CIA chips' time-of-day clocks in
Chapter 8.

1 6 3 $ A 3 P C N T R / R 2 D 2
Tape: Count of bits to be read or written
Serial: EOI flag
When characters are being read from or written to tape, this
location is used as a countdown for the number of bits re-
maining to be received or sent.

When characters are being sent over the serial bus, this
location is used to indicate when an EOI (end or identify) hand-
shake should be performed to mark the end of the file. The
EOI sequence is added when bit 7 of this location is set to % 1 .

164 $A4 FIRT/BSOUR1
Tape: Half-cycle indicator
Serial: Byte received
When bits are being read from or written to tape, this location
is used to indicate which half-cycle for the bit is currently be-
ing received or sent.

When characters are being received over the serial bus,
this location is used to assemble received bits into complete
bytes.

165 $A5 CNTDN/COUNT
Tape: Leader synchronization countdown
Serial: Count of bits to send / burst mode byte count
During the routines which write blocks of data to tape, this lo-
cation is used to provide the countdown characters that come
at the end of each leader segment. The value here is initialized
to 9; it will then be repeatedly written to tape and decremented
until the value reaches zero.

When characters are being sent over the serial bus, this
location is used as a countdown of bits to be sent. The value
here is initialized to 8 for each byte and decremented each
time a bit is sent. When bytes are being read from the serial
bus, this location is used to indicate whether an EOI hand-
shake has been detected. The value is initialized to 0/$00,
then incremented after the first EOI is received. During high-
speed burst mode loads, this location is used as a count of the
number of bytes read from the current disk sector.

166 $A6 BUFPT
Pointer into cassette buffer
This location is used during the tape BASIN routine to hold
the offset to the next character to be read from the cassette
buffer. This location is incremented after each character is read
from the buffer. When the value here reaches 192/$C0, all
characters have been read from the buffer, so another block of
data will be read into the buffer (if another is available) and
the value here will be reset to 0/$00. During the tape BSOUT
routine, this location holds the offset of the next available po-
sition in the cassette buffer. This location is incremented each
time a character is added to the buffer. The buffer is consid-
ered filled when the value here reaches 192/$C0, at which the

56 57

167 $A7 $AC-$AD 172-173

block of data will be written to tape and the value here will be
reset to 0/$00.

167 $A7 SHCNL/INBIT
Tape: Leader dipole count / block indicator
RS-232: Current bit received

During the routines which write to tape, this location is used
as one counter in a timing loop to specify the number of lead-
er dipoles to be written. When reading from tape, this location
is used to indicate which block is being read.

When characters are being received over the RS-232 inter-
face, this location holds the most recently received bit.

168 $A8 RER/BITCI
Tape: Half-cycle indicator for writing / error flag for reading
RS-232: Count of bits remaining to be received
When bits are being written to tape, this location is used to
indicate which half-cycle of the dipole for the bit is currently
being written. When characters are being received from tape,
this location is used as a flag to indicate an error in the re-
ceived byte.

When characters are being received over the RS-232 inter-
face, this location is used as a countdown for the number of
bits to be received for the current character. The value here
will be initialized from 2581/S0A15 for each character.

1 6 9 $ A 9 REZ/RINONE
Tape: Word marker flag / half-cycle flag
RS-232: Start bit received flag

When characters are being written to tape, this location is used
to indicate whether a word marker dipole has yet been written
for the current character. When characters are being read from
tape, this location is used to indicate whether the next half-
cycle should be a long or short one.

When characters are being received over the RS-232 inter-
face, this location is used to indicate whether a start bit has
been received yet, A nonzero value here indicates that the sys-
tem is still waiting for a start bit, while a value of 0/$00
means that a start bit has been received.

170 $AA RDFLG/RIDATA
Tape; Read phase flag
RS-232: Assembly byte for received bits
During the routines which read from tape, this location indi-
cates the current stage of the operation. When the value here
is 0/$00, the reading routine is waiting for the synchroniza-
tion countdown characters to be read. Nonzero values less
than 64/$40 indicate that block countdown characters are be-
ing read. A value of 64/$40 indicates that the first copy of the
data block has been read, while a value of 128/$80 indicates
that all characters from the first block have been read and the
routine is waiting for the second copy.

When characters are being received over the RS-232 inter-
face, the bits received are shifted into this location until a full
byte has been assembled.

171 $AB SHCNH/RIPRTY
Tape: Leader dipole counter / checksum work byte
RS-232: Received byte parity
During the routines which write to tape, this location is used
as one counter in a timing loop to specify the number of lead-
er dipoles to be written. During the routines which read from
tape, this location is used for computing the checksum for the
block being read.

When characters are being received over the RS-232 inter-
face, this location is used to indicate whether an odd or even
number of %1 bits have been received, to determine the parity
of the received bit.

172-173 $AC-$AD SAL-SAH
Kernal working address pointer
These locations are used as a pointer to the address of the cur-
rent byte to be written to tape or saved to disk, or the address
where the byte read from tape or from a disk boot sector is to
be stored. The Kernal has several routines to service this pointer,
including one [$ED51] to load this pointer with the operation
starting address in 193-194/$C1-$C2, one [$EEC1] to incre-
ment the address here, and one [$EEB7] to compare the ad-
dress here against the operation ending address at 174-175/
$AE-$AR There is also a routine [$F7CC] to retrieve the char-
acter at the pointer address from the bank specified in 198/$C6,

58 59

172-175 $AC-$AF

and one [$F7BC] to store the current accumulator contents at
the pointer address in the bank specified in 198/$C6.

172-175 $AC-$AF
Work area for disk booting
The Kernal BOOT-CALL routine [$F890] uses locations
172-173/$AC-$AD to hold the address at which the contents
of additional boot sectors are to be stored. Location 174/$AE
holds the bank number for the additional data. Location 175/
$AF holds the number of disk sectors to be loaded during the
boot process.

174-175 $ AE-$ AF EAL-E AH
Kernal address pointer
This location is used during the routines which read from or
write to tape, or in saving to disk, to hold the ending address
for the operation. For loading from disk, this location is used
as a working pointer to the address where data is stored. After
all bytes have been loaded, the locations will hold the ending
address. (Actually, in all cases the pointer will hold the ad-
dress of the location immediately following the last one in-
volved in the operation.) The Kernal SAVF routine [$F53E]
initializes these locations with the contents of the X and Y reg-
isters when the routine is called. The Kernal provides a routine
[$F7C9] to retrieve the character at the pointer address from
the bank specified in 198/$C6, and one [$F7BF] to store the
current accumulator contents at the pointer address in the
bank specified in 198/$C6.

176 $BO CMPO
Tape adjustable baseline compensation factor
This location is used during tape routines to indicate whether
the current baseline time (the time allotted for a particular
type of dipole) needs to be slightly increased or decreased.
This allows the computer to compensate for slight variations
in tape speed.

177 $B1 TEMP
Working storage for compensation factor computation
This location is used as a work byte for computing the base-
line compensation factor at 176/$B0.

60

$B6 182

178-179 $B2-$B3 TAPE1
pointer to cassette buffer
These locations hold the starting address of the 192-byte cas-
sette buffer. The value here is initialized to 2816/$0B0O by the
Kernal RAMTAS routine, part of the reset sequence. No
Kernal routine changes this default setting. The routines that
read and write data to tape test these locations to insure that
the address is greater than 512/$0200.

180 $B4 SNSW1/BITTS
Tape: leader/data flag
RS-232: Count of bits transmitted
During routines which read from tape, this location is used to
indicate whether the routine is currently waiting for the start
of a data block (indicated by a value of 0/$00 here) or reading
data from a block (indicated by a nonzero value here).

When bytes are being sent over the RS-232 interface, this
location holds the count of bits sent for the current character.

181 $B5 DIFF/NXTBIT
Tape: Leader completed flag
RS-232: Next bit to send
During routines which read from tape, this location is used to
indicate when the end of a leader segment has been reached.
The value here is set to 0/$00 when the word marker at the
end of a leader is read.

When bytes are being sent over the RS-232 interface, bit 2
of this location is used to hold the setting of the next bit to be
sent.

182 $B6 PDP/RODATA
Tape: Error flag / end of block flag
RS-232: Character being sent
When an error is detected while a character is being read from
tape, this location is set to a nonzero value to indicate that the
character has not been read successfully. During routines
which write to tape, this location is used as a flag to indicate
when end-of-block processing should be performed.

When bytes are being sent over the RS-232 interface, this
location holds the character being sent. Bits are pulled off one
at a time from right to left.

61

183 $ B '

183 $B7 FNLEN
Length of current filename
This location holds the length of the filename for the current
I/O operation. The value here can be set using the Kernal
SETNAM routine [$F731]. The starting address for the file-
name is held in locations 187-188/$BB-$BC, and the bank
number where the filename is found is held in location
199/$C7.

LA184 $B8
Logical file number
This location holds the logical file number for the current I/O
operation. The value here can be set using the Kernal SETLFS
routine [$F738]. When a file is opened, the value here will be
transferred into the logical file number table at 866-875/
$0362-$036B.

SA185 $B9
Current secondary address
This location holds the secondary address for the current I/O
operation. The value here can be set using the Kernal SETLFS
routine [$F738]. When a file is opened, the value here will be
transferred into the secondary address table at 886-895/
$0376-$037F.

FA186 $BA
Current device number
This location holds the device number for the current I/O op-
eration. The value here can be set using the Kernal SETLFS
routine [$F738], When a file is opened, the value here will be
transferred into the device number table at 876-885/
$036C-$0375.

187-188 $BB-$BC FNADR
Pointer to start of filename
These locations hold the starting address of the filename for
the current I/O operation. The value here can be set using the
Kernal SETNAM [$F731]. Location 183/$B7 holds the length
of the filename, and location 199/$C7 holds the bank number
in which the filename is located.

62

$co 192

189 $BD OCHAR/ROPRTY
Tape: Byte read from tape / byte to be written to tape
RS-232: Parity calculation working storage
Serial: Current byte during burst mode load
For tape operations, this location holds the byte most recently
read, or the byte currently being written.

When bytes are being sent over the RS-232 interface, this
location is used to indicate whether an even or odd number of
%1 bits have been sent in the current character. This infor-
mation is used to determine the value of the parity bit if one is
to be sent.

During high-speed burst mode loads from disk, this loca-
tion holds the byte most recently received from the drive.

190 $BE FSBLK
Block count
This location is used during routines which read from or write
to tape to specify which of the two images of the current block
is currently being read or written.

191 $BF MYCH/DRIVE
Tape: Assembly area for byte being read
Disk: Default drive number for booting
When characters are being read from tape, the bits read are as-
sembled in this area until a complete byte is formed; then the
value is transferred to location 189/$BD for evaluation or
storage.

During the BOOT_CALL routine [$F890], this location is
used to hold the character code for the specified drive number.
The contents of the accumulator when the routine is called
will be stored here.

1 9 2 $CO CAS1
Tape motor interlock
This location is used to control bit 5 of the processor I/O port
at location l/$01. The system jiffy IRQ sequence includes a
subroutine [$EED0] which tests bit 4 of the processor port to
determine whether any Datassette buttons are pressed. If no
buttons are pressed, this location is set to 0/$00 and bit 5 of
the port is set to %1 to turn off power to the cassette motor.
When a button is pressed, this location is checked. If it con-

63

193-194 $C1-$C2 $CC-$CD 204-205

tains a 0/$00, the port bit is set to turn off the power. Thus,
the cassette motor can't be powered when no button is
pressed or while this location contains 0/$00. When this loca-
tion is set to any nonzero value, the setting of the port bit is
not affected by the IRQ subroutine, so—as long as a button is
pressed—the motor can be turned on and off, changing the
setting of the port bit.

193-194 $C1-$C2 STA
Kernal address pointer
These locations are used by the Kernal SAVE routine [$F542]
to hold the starting address of the area of memory to be saved
to disk or tape, The value is loaded from the zero-page pointer
specified in the accumulator upon entry to the routine.

These locations are also used by the Kemal BOOT_CALL
routine. Location 193/$C1 holds the track number and loca-
tion 194/$C2 holds the sector number for the block currently
being read from disk.

195-196 $C3-$C4 TMP2/MEMUSS
Kernal address pointer
The contents of the X and Y registers upon entry to the Kemal
LOAD routine [$F265] are stored here. If the secondary ad-
dress that preceded the LOAD was 0/SOO, a relocating load
was specified, so this address is used as the starting address
for the loaded data.

These locations are also used as a working pointer in the
routine [$E1FO] to initialize the soft reset vector,

197 $C5 DATA
Bit read from tape / checksum of block written to tape
During routines which read from tape, this location is used to
indicate the value of the bit most recently read. During
routines which write to tape, this location is used for working
storage of the checksum being calculated for the block.

198 $C6 BA
Bank where data for save, load, or verify is found
This location holds the bank number from which data will be
saved by the Kernal SAVE routine or to which data will be
loaded or verified by the Kernal LOAD routine. The value

here doesn't affect the current system configuration; it only
specifies the bank for load, save, or verify operation data. The
Kernal SETBANK routine [$F73F] can be used to set the value
here.

199 $C7 FNBANK
Bank where filename for open, save, load, or verify is found
This location holds the bank number in which the filename for
the current I/O operation is found. The value here can be set
using the Kernal SETBANK routine [$F73F].

200-201 $C8-$C9 RIBUF
Pointer to RS-232 input buffer
The value in these locations determines the starting address of
the 256-byte RS-232 input buffer—the area where characters
are stored as they are received via the RS-232 interface. The
value here is initialized to 3072/S0C00 by the RAMTAS rou-
tine [$E093], part of the reset sequence. This places the input
buffer at its default position, and no system routine changes
this setting.

202-203 $CA-$CB ROBUF
Pointer to RS-232 output buffer
The value in these locations determines the starting address of
the 256-byte RS-232 output buffer—the area where characters
are stored while they await transmission via the RS-232 inter-
face. The value here is initialized to 3328/S0D00 by the
RAMTAS routine [$E093], part of the reset sequence. This
places the output buffer at its default position, and no system
routine changes this setting.

204-205 $CC-$CD KEYTAB
Pointer to current keyboard decode table
The value in these locations determines the starting address of
the 89-byte area of memory which will be used to decode the
current keyboard matrix code in location 212/$D4. The
SCNKEY routine [$C55D], part of the normal IRQ sequence,
checks on the shift-key status (in location 211/$D3) and se-
lects the proper value from the list of keyboard table pointers
at $83u-841/$033E-$0349.

64 65

206-207 $CE-$CF

206-207 $CE-$CF IMPARM
Pointer for Kernal PRIMM routine
These locations are used as a working pointer to the character
to be printed during the Kernal PRIMM routine [$FA17].

208 SD0 NDX
Number of characters in the keyboard buffer
This location holds the number of characters awaiting process-
ing in the keyboard buffer at 842/$034A. The value here is
initialized to zero by the CINT routine, part of the RESET se-
quence. This location is also reset to zero by the STOP routine
if the STOP key is pressed. It is incremented during the
SCNKEY routine [$C55D] whenever a character is added to
the buffer, and decremented whenever a key is removed (by
the Kernal BASIN or GETIN routines). The value here is not
allowed to exceed the maximum keyboard buffer length speci-
fied in location 2592/$0A20.

209 $D1 KYNDX
Number of characters pending from programmable key string
This location holds the number of characters remaining to be
read from the string for the most recently pressed programma-
ble key. The value here is initialized to zero by the CINT rou-
tine, part of the RESET sequence. When the press of a
programmable key is detected during the SCNKEY routine
[$C6CA], the length of the string for that key is stored here.
The value is then decremented as each character is read from
the string (by GETIN or BASIN).

210 SD2 KEYIDX
Pointer into the programmable key definition area
This location holds the offset to the next character to be read
from the programmable key definition string area at 4106-4351/
$100A-$10FF. When the press of a programmable key is de-
tected during the SCNKEY routine [$C6CA], the offset to the
definition string for that key is stored here. The value here is
incremented as each character is read from the string.

5D4 212

211 $D3 SHFLAG
Shift key status flag
This location is set during the SCNKEY routine [$C55D] to in-
dicate which of the shift keys—SHIFT, Commodore, CTRL,
ALT, or CAPS LOCK—are currently being pressed. Each key
has a corresponding bit which is set to %1 when the key is
pressed:
Key
SHIFT
Commodore
CONTROL
ALT
CAPS LOCK

Bit Bit value
0 l/$01
1 2/$02
2 4/$04
3 8/$08
4 16/$10

The values are cumulative; if both SHIFT and CONTROL are
pressed simultaneously, the value here will be 5 (4 + 1).
Based on the value here, the SCNKEY routine chooses a key-
board table pointer value to be stored in 204-205/$CC-$CD.

Bit 7 of this location is also used as a flag to indicate
when the extra characters read using the VIC chip lines are
being scanned.

212 $D4 SFDX
Current key pressed
This location is used during the SCNKEY routine [$C55D],
part of the system jiffy IRQ sequence, to hold a value indicat-
ing which key was pressed. Each key has a unique keyscan
matrix code here, but the code values are different from either
character codes or screen codes. Refer to Appendix C for a list
of keyscan codes. The key's keyscan code (0-87) serves as an
offset into the keyboard decoding table pointed to by locations
204-205/$CC-$CD to select the character code to be added to
the keyboard buffer at 872/$034A. A scan code of 88 indicates
that no key was pressed.

It's possible to read this location as an alternative to using
the BASIC GET or GETKEY statements or the machine lan-
guage GETIN routine when you want to check for the press of
a particular key. For example, the two following statements
produce the same result, a delay until the X key is pressed:
100 IF PEEK(212)<>23 THEN 100
100 GET K$:IF K$o"X" THEN 100

66 67

213 $D5 $D8 216

Certain keyscan codes will not normally be recorded here.
The codes for the left and right SHIFT keys, the CONTROL
key, the Commodore key, and the ALT key—codes 15, 52, 58,
61, and 80, respectively—-are normally intercepted during the
SCNKEY routine and used to generate the value at 211/SD3.
The CAPS LOCK, 40/80 DISPLAY, and RESTORE keys are
not part of the keyscan matrix, and the SHIFT LOCK key is
just a switch that has the effect of holding down the left
SHIFT key.

$D5 LSTX213
Last key pressed
At the end of the SCNKEY routine [$C55D], the value in
212/$D4 is transferred here. This value is then used during
the next pass through SCNKEY to determine if the same key
is still being pressed. If so, no additional character code will be
added to the keyboard buffer unless key repeating is enabled.

$D6 CRSW214
Input source flag
This location is used during the screen editor BASIN routine
[SC29B] to indicate whether the line of input is to come from
the keyboard or from the screen. The default value of 0/S00
selects input from the keyboard, while a nonzero value selects
input from the screen. The Kernal BASIN routine [$EF06] will
set this location to 3/$03 before calling the screen editor rou-
tine when screen input is requested. Bit 7 of this location is
used as an end-of-input flag; however, this is not handled
properly for input from the screen. See the entry for the screen
editor routine in Chapter 7 for details.

$D7 MODE215
Active screen flag
Bit 7 of this flag determines which text screen is considered
the active display. While the bit is %1 , the 80-column display
is selected. While the bit is %0, the 40-column display is ac-
tive. Note that the inactive screen isn't actually turned off; it
retains whatever display it had when the other screen was se-
lected. However, only the active screen has a "live" cursor,
and all printing is directed there. During the reset and

68

RUN/STOP-RESTORE sequences, the screen editor initializa-
tion routine [$C07B] sets this flag according to the position of
the 40/80 DISPLAY key.

While it is often useful to check this flag to determine
which display is active, it shouldn't be changed to switch ac-
tive displays. Instead, use the escape sequence (ESC X) or the
Kernal SWAPPER routine [$FF5F]. There's more to changing
active displays than just toggling the flag bit—the active and
inactive screen editor variable tables, line link bitmaps, and
tab stop bitmaps must also be exchanged.

2 1 6 $ D 8 GRAPHM
Mode flag for 40-column screen
This location is used during the screen IRQ routine [$C194] to
determine which display mode is selected for the 40-column
(VIC) screen. The value here has no effect on the 80-column
(VDC) screen. When this location contains 0/$00, text mode is
selected. Bits 5-7 control the graphics mode configurations:
Bit Bit value Mode selected
5 32/$20 bitmapped
6 64/$40 split bitmapped/text
7 128/$80 multicolor

More than one of these can be selected at one time. The stan-
dard graphics modes place the following values here:
Mode Value
GRAPHIC 0 0/$00
GRAPHIC 1 32/$20
GRAPHIC 2 96/$60
GRAPHIC 3 160/JAO
GRAPHIC 4 224/$E0

While the standard screen editor interrupt routine is in
use, the value here determines how the screen mode will be
set up. As a result, you cannot directly change the bitmapped
or multicolor mode control bits of the VIC chip, since those
bits will be set according to the value here. You can turn off
the screen-setup portion of the screen editor IRQ routine by
storing the value 255/$FF here. This gives you direct control
over the VIC chip register settings, but disables BASIC'S ability
to change display modes.

69

217 $D9

217 $D9 CHAREN
CHAREN bit shadow
Bit 2 of this location serves as a shadow for the CHAREN bit
bit 2 of the processor I/O port at location l/$01. The value of
the bit in this location is copied to the port bit during each
pass through the text screen-setup portion of the screen editor
IRQ routine [$C194]. Thus, the setting of the port bit cannot
be changed directly while the standard interrupt routine is in
use. Instead, you must set the bit here to the desired value
and let the interrupt routine set the port bit accordingly.

The setting of the CHAREN bit determines whether the
VIC chip sees the ROM character sets at offsets of 4096/$1000
and 6144/$1800 in the current video bank. When the bit is
%0, the standard ROM character set is visible to the VIC.
When the bit is set to % 1 , the VIC instead sees the true con-
tents of memory in the video bank.

218-223 $DA-$DF SEDSAL
Screen editor zero-page work area
Assorted screen editor routines use these locations for various
functions. Location 218/SDA is used as temporary storage by
the routines that calculate bit positions in the line link map
[$CB9F] or tab stop table [$C961, $C96C]. During a number of
routines, location 222/$DE is used as temporary storage for
the current cursor column, and 223/$DF is used as storage for
the current cursor row.

For the PFKEY routine [$CCA2], location 218/$DA holds
the length of the current key definition string. Location
219/$DB holds the total length of all programmable key defi-
nitions. Location 220/$DC holds the current key number
(0-9). Location 221/$DD holds the index to the next key defi-
nition beyond the current one. Location 222/$DE holds the
MMU setting for the bank where the definition string is found.
223/$DF is used as temporary storage for the index in the X
register.

For the INIT80 routine [$CE0C], locations 218-219/
$DA-$DB are used as a pointer to the character ROM at
53248/$D000. The screen-scrolling routine [$C40D] uses loca-
tions 218-219/SDA-DB as a pointer to the start of screen
memory for the current line. Locations 220-221/$DC-$DD
are used as pointers to the start of attribute memory for the
current screen line.

70

$E2-$E3 226-227

Screen Editor Variable Table
Locations 224-249/$E0-$F9 comprise the screen editor vari-
able table for the active display. All locations in the table are
initialized during the CINT screen editor initialization routine
[$C07B]. An equivalent table for whichever display is currently
inactive is maintained at 2624-2649/$0A40-$0A59, Whenever
the SWAPPER routine [$CD2Ej is called to switch active
screen displays, the contents of this table are exchanged with
the values from the inactive screen table. Thus, the table
settings here are retained even when the screen is not active.

224-225 $EO-$E1 PNT
Pointer to first screen memory location for current line
Whenever the cursor is moved onto a new line, the screen
memory address corresponding to the leftmost column of that
line is calculated and stored in these locations. These locations
can then be used as a pointer to screen memory locations for
the current line. The value 236/$EC serves as an offset to the
current cursor column. The low byte of the address comes
from the value in the table at 49203/$C033 corresponding to
the current row (multiplied by 2 if the 80-column display is
active). The high byte comes from the value in the table at
49228/$C04C corresponding to the current row, adjusted for
the starting screen memory page value in 2619/$0A3B in the
case of the 40-column (VIC) display, or for the starting screen
memory page value in 2606/$0A2E in the case of the 80-col-
umn (VDC) display. Since the tables have only 25 valid en-
tries, the screen editor cannot support an output window with
more than 25 rows.

226-227 $E2-$E3 USER
Pointer to first attribute memory location for current line
Whenever the cursor is moved onto a new line, the color
memory address corresponding to the leftmost column of that
line is calculated and stored in these locations. These locations
can then be used as a pointer to attribute memory locations
for the current line. The value 236/$EC serves as an offset to
the current cursor column. The low byte of the address comes
from the value in the table at 49203/$C033 corresponding to
the current row (multiplied by 2 if the 80-column display is
active). The high byte comes from the value in the table at
49228/$C04C corresponding to the current row, adjusted for a

71

228 $E4 $EA 234

starting page of 216/$D8 in the case of the 40-column (VIC)
display, or for the starting color memory page value in
2607/$0A2F in the case of the 80-column (VDC) display.
Since the tables have only 25 valid entries, the screen editor
cannot support an output window with more than 25 rows.

228 $E4 SCBOT
Bottom margin of current window
The value in this location determines which screen row will be
the bottom margin of the current output window. This value
should be greater than or equal to the value in location
229/SE5. This location is reset to the maximum column num-
ber from location 237/$ED when the window is reset to full
screen size, as when the CINT screen editor initialization rou-
tine is executed. This location can be assigned a specific row
number using the screen editor WINDOW routine [$CA1B],
which has a screen editor jump table entry at 49197/$C02D.
From BASIC, the WINDOW statement can be used to change
the value here. The ESC T sequence will cause the row num-
ber for the current cursor position to be stored here.

229 $E5 SCTOP
Top margin of current window
The value in this location determines which screen row will be
the top row of the current output window. This value must be
less than or equal to the value in location 228/$E4. The value
here is reset to 0/$00, the top row of the screen, when the
window is reset to full screen size, as when the CINT screen
editor initialization routine is executed. This location can be
assigned a specific row number using the screen editor WIN-
DOW routine [$CA1B], which has a screen editor jump table
entry at 49197/$CO2D. From BASIC, the WINDOW statement
can be used to change the value here. The ESC T sequence
will cause the row number for the current cursor position to
be stored here.

230 $E6 SCLF
Left margin of current window
The value in this location determines which screen column
will be the left margin of the current output window. This
value must be less than or equal to the value in location
231/SE7. The value here is reset to 0/$00, the left edge of the

71

screen, when the window is reset to full screen size, as when
the CINT screen editor initialization routine is executed. This
location can be assigned a specific column number using the
screen editor WINDOW routine [$CA1B], which has a screen
editor jump table entry at 49197/$C02D. From BASIC, the
WINDOW statement can be used to change the value here.
The ESC T sequence will cause the column number for the
current cursor position to be stored here.

231 $E7 SCRT
Right margin of current window
The vaiue in this location determines which screen column
will be the right margin of the current output window. This
value should be greater than or equal to the value in location
230/$E6. This location is reset to maximum column number
from location 238/$EE when the window is reset to full screen
size, as when the CINT screen editor initialization routine is
executed. This location can be assigned a specific column
number using the screen editor WINDOW routine [$CA1B],
which has a screen editor jump table entry at 49197/$C02D.
From BASIC, the WINDOW statement can be used to change
the value here. The ESC B sequence will cause the column
number for the current cursor position to be stored here.

232 $E8 LSXP
Cursor row for start of input
This location determines the starting row for the logical line of
input characters to be read by the BASIN routine [$C29B]. Lo-
cation 235/$EB will hold the row for the end of the input line.

233 $E9 LSTP
Cursor column for start of input
This location determines the starting column for the logical
line of input characters to be read by the BASIN routine
[$C29B]. Location 2608/$0A30 will hold the column for the
end of the input line.

234 $EA INDX
Column of last nonspace character on logical line
The screen editor includes a routine [$CBC3] to find the posi-
tion of the last nonspace character in the current logical line.
That routine stores the column number of the character posi-
tion here.

73

235 $EB SEE 238

235
Cursor row

$EB TBLX

This location holds the cursor's horizontal position on the
screen. When the cursor is moved onto a new line, the value
here is used as an offset into the screen memory line base
starting address tables during the calculation of the starting
address for the current screen memory line (224-225/
$EO-$E1) and the starting address for the current color mem-
ory line (226-227/$E2-$E3). When the output window is
cieared or the cursor is moved to the home position, the value
here will be reset to the value in location 229/$E5, the top
margin of the window. The value here is incremented when-
ever the cursor wraps around from the right margin of the
window back to the left—or whenever a RETURN character
(code 13/$0D), SHIFT-RETURN (code 141/$8D), or cursor-
down (code 17/ $11) is printed—unless the increment would
cause the value here to exceed the bottom margin value in
228/$E4. The action taken in that case depends on whether
the scrolling flag (248/$F8) is set to allow new lines to be
scrolled onto the screen. If so, the value here remains un-
changed and a new line is opened at the bottom of the win-
dow. If scrolling is not allowed, the value here is reset to the
value in 229/$E5 to wrap the cursor to the top of the window.

The PLOT routine [$CC6A] can be used to set or read the
value here, but the vertical coordinate used by PLOT is rela-
tive to the current top margin. That is, the vertical offset
placed here when PLOT is used will be the vertical coordinate
specified in the PLOT call plus the current top margin value in
235/$E5, and the coordinate value returned by PLOT will be
the value here less the current top margin value in 229/$E5.

236 $EC PNTR
Position of cursor within current physical line
This location holds the cursor's horizontal position on the
screen. The value here is used as an offset from the starting
address of the current screen memory line (224-225/$E0-$El)
to determine the screen memory position of the current char-
acter, and as an offset from the starting address of the current
color memory line (226-227/$E2-$E3) to determine the color
memory position of the current character.

When the output window is cleared or when the cursor is
moved to the home position, the value here will be reset to

74

the value in location 230/SE6, the left margin of the output
window. Each time a character is printed to the window, the
value here is incremented, unless the increment would cause
the value here to exceed the value in location 231/$E7, In that
case, the value here is reset to the left margin value in 230/
$E6. The value here is also reset to the left margin value when-
ever a RETURN character (code 13/SOD) or SHIFT-RETURN
(code 141/$8D) is printed.

The PLOT routine [$CC6A] can be used to set or read the
value here, but the coordinates supplied to PLOT are relative
to the current left margin. That is, the horizontal offset placed
here when PLOT is used will be the horizontal coordinate
specified in the PLOT call plus the current left margin value in
230/$E6, and the coordinate value returned by PLOT will be
the value here less the current left margin value in 230/SE6.

237 $ED LINES
Maximum number of rows allowed in output window
The value here determines the maximum bottom row for the
output window. The current bottom row number is specified
in location 228/$E4. When the window is reset to full screen
size by printing two {HOME} characters (code 19/$13) in se-
quence (or by directly calling the screen editor window reset
routine [$CA24]), location 228/$E4 will be reset to the value
here. This location is set to 24/$18 during the CINT screen
editor initialization routine, which establishes the default max-
imum of 25 horizontal rows of characters in the output win-
dow (remember that row numbering begins at zero). No
system routine changes this setting, but you can reduce the
value here to restrict the maximum height of the output win-
dow. However, you should not increase the value above the
default setting, since the screen editor printing routines will
not properly support a window more than 25 lines tall.

238 $EE COLUMNS
Maximum number of columns allowed per row
The value here determines the maximum right margin column
for the output window. The current right margin column num-
ber is specified in location 231/$E7. When the window is reset
to full screen size by printing two {HOME} characters (code
19/$13) in sequence (or by directly calling the screen editor
window reset routine [$CA24]), location 231/$E7 will be reset

75

239 $EF $F1 241

to the value here. During the CINT screen editor initialization
routine, this location is set to 39/$27 if the 40-column (VIC)
display is the default, or to 79/$4F if the 80-column (VDC)
display is the default. This establishes the default widths of
the respective displays (remember that column numbering be-
gins at zero). No system routines change these settings, but
you can reduce the value here to restrict the maximum width
of the output window. However, you should not increase the
value above the default settings, since the screen editor print-
ing routines will not properly support windows wider than the
respective defaults.

$EF DATAX239
Character to print
This location is used during the screen editor printing routines
to hold the character code (not the screen code) for the charac-
ter to be printed.

240 $F0 LSTCHR
Last character printed
This location is used during the screen editor printing routines
to hold the character code for the previous character printed.
After each character is printed, the code for that character is
transferred here from location 239/$EF. The value is used to
detect when certain key sequences have been printed, such as
the escape (ESC) sequences and the HOME HOME sequence
to reset the output window margins. One shortcut to printing
an escape sequence is to set this location to 27/$lB (the code
for the ESC character), then call the screen BSOUT routine
[$C00C] with the accumulator holding the second character of
the escape sequence.

241 $F1 COLOR
Attribute of current character
The value in this location determines the color (and attribute
for the VDC display) that will be used for the next character
printed to the output window. When the screen code for the
character is placed in screen memory, the value here will be
placed in the corresponding position in color memory. When
the 40-column (VIC) screen is the active display, only the
lower four bits of this location are meaningful. Those bits will
hold the VIC color code (0-15) for the character position, See

76

the discussion of the VIC chip in Chapter 8 for details. For the
80-column (VDC) display, the lower four bits also hold the
color value, but the relationship of values to colors is different
from that for the VIC chip. Refer to the discussion of the VDC
in Chapter 8 for more information.

When the VDC display is active, the upper four bits of
this location hold the attribute value for the next character to
be printed. Refer to the discussion of the VDC chip in Chapter
8 for more information on attributes. Bit 4 determines whether
the character will flash. Printing character code 15/$0F will set
bit 4 to % 1 , which specifies a flashing character. Printing char-
acter code 143/$8F resets bit 4 to %0, which turns off the
flashing attribute. Bit 5 determines whether the character will
be underlined. Printing character code 2/$02 will set bit 5 to
% 1 , which specifies an underlined character. Printing charac-
ter code 130/$82 resets bit 5 to %0, which turns off the un-
derlining attribute. Bit 6 could be used to determine whether
the character is reversed. Setting the bit to %1 specifies a re-
versed image of the character pattern, and resetting the bit to
%0 specifies a normal character. However, the 128's screen
editor does not make use of this feature. Instead, each stan-
dard character set contains both normal and reversed character
patterns and reversed characters are obtained by selecting the
reversed character pattern. Bit 7 determines which of the two
character sets will be used. When the bit is %0, the first
(uppercase/graphics) set is selected, while setting the bit to
%1 selects the second (lowercase/graphics) set. Thus, the
VDC allows both character sets to be used on the same dis-
play. When the VDC display is active, printing character code
14/$0E sets this bit to %1 , and printing character code
142/$8E resets the bit to %0. If character set switching with
the SHIFT-Commodore key combination is allowed, then that
combination will toggle the value of this bit.

The CINT screen editor initialization routine will set this
location to 13/$0D if the VIC screen is the default display, or
to 7/$07 if the VDC screen is the default. This selects light
green characters for the VIC display or light cyan characters
with no special attributes for the VDC display. The color value
in the lower four bits can be changed by printing any of the
16 color change characters. Refer to Appendix C for a list of
character code values.

77

242 $F2 $F6 246

242 $F2 TCOLOR
Temporary storage for attribute byte
This location is used to temporarily preserve the value from
241/$F1 during screen editor routines that insert or delete
characters or scroll screen lines.

243 $F3 RVS
Reverse mode flag
The value in this location determines whether reverse mode is
active. Reverse mode is active whenever this location contains
a nonzero value. In this case, bit 7 will be set to %1 in each
screen code placed in screen memory by the BSOUT screen
printing routine. This effectively converts screen codes
0-127/$00-$7F to codes 128-255/$80-$FF. In the default
character sets, character patterns in the upper half of each set
are the reverse image of corresponding patterns in the lower
half. The value here is initialized to 0/$00 (reverse mode off)
by the CINT screen editor initialization routine. This location
is set to 128/S80 when the reverse-on character (code 18/$12)
is printed, and reset to 0/$00 when the reverse-off character
(code 146/$92) is printed. The value here is also reset to zero
each time a carriage return character (code 13/$0D) or shifted
return (code 141/$8D) is printed to end the line. This location
can also be reset to zero to disable reverse mode with either
the ESC O or ESC ESC sequences.

$F4 9TSW244
Quote mode flag
This value in this location determines whether quote mode is
active. Quote mode will be in effect whenever this location
contains a nonzero value. In this case, cursor movement keys,
CONTROL key combinations, Commodore-number key (color
change) combinations, and the insert key (SHIFT-INST/DEL)
are deferred—they appear as reverse characters within the cur-
rent screen line instead of having any direct effect on the
screen display. The value here is initialized to 0/$00 (quote
mode off) by the CINT screen editor initialization routine. The
value here is exclusive-ORed with l/$01 each time a quote
character (code 34/$22) is printed. Thus, quote mode will nor-
mally be on after an odd number of quotes (1, 3, and so on)
and off after an even number of quotes (2, 4, and so on). This

78

location is reset to zero each time a carriage return character
(code 13/$0D) or shifted return (code 141/$8D) is printed to
end the logical line. This location can also be reset to zero to dis-
able insert mode with either the ESC O or ESC ESC sequences.

2 4 5 $ F 5 INSRT
Number of pending inserts
This location holds the number of character positions which
have been inserted in the current logical line. This is signifi-
cant because insert mode is normally active for inserted char-
acter positions. Insert mode is similar to quote mode—cursor
movement and color change characters are deferred—except
that the insert key is not deferred in insert mode and the de-
lete key (INST/DEL) is deferred. Insert mode is active when-
ever this location contains a nonzero value. The value here is
incremented each time a blank character position is inserted in
the current line, and decremented each time a character is
typed in one of the inserted positions. This location is initial-
ized to 0/$00 (insert mode off) by the CINT screen editor ini-
tialization routine. It is also reset to zero each time a carriage
return character (code 13/$0D) or shifted return (code
141/$8D) is printed to end the line. This location can also be
reset to zero to disable insert mode with either the ESC O or
ESC ESC sequences.

2 4 6 $ F 6 INSFLG
Autoinsert mode flag
Bit 7 of this location determines whether the autoinsert feature
is active. When the bit is %1 , autoinsert mode is active, and a
space is inserted following each character printed to the
screen. If the bit is %0, autoinsert mode is disabled. In this
case, the cursor simply moves to the next character position
after each character is printed. This location is initialized to
0/$00 (autoinsert mode off) during the CINT screen editor ini-
tialization routine. It is also reset to zero by the BASIC sub-
routine that sets flag values when a RUN statement is
executed [$5A81]. This location is set to 255/SFF (which sets
bit 7 to %1) when the ESC A sequence is printed. It can be re-
set to 0/$00 with the ESC C sequence.

79

247 $F7

247 $F7 LOCKS
Case switching / scroll pause control flag
Bit 7 of this location determines whether the SHIFT-Commo-
dore key combination can be used to switch character sets. If
this bit is %0, the SCNKEY routine [$C55D] will switch char-
acter sets whenever the SHIFT-Commodore combination is de-
tected. Setting this bit to %1 disables character set switching
with SHIFT-Commodore. However, you can still change char-
acter sets by printing character 14/$0E for the lowercase/
uppercase set, or character 142/$8E for the uppercase/
graphics set. There is no provision for preventing character set
switching using the character codes. This location is initialized
to 0/$00 (switching enabled) by the CINT screen editor initial-
ization routine. The bit can be set to %1 by printing character
code 11/$OB, and reset to %0 by printing character code
12/$0C. (Note that this is a change from earlier Commodore
models, where character 8/$08 disabled switching and charac-
ter 9/$09 reenabled switching.)

Bit 6 of this location controls whether the NO SCROLL
key or CONTROL-S key combination can be used to pause
output to the screen. If this bit is %0, NO SCROLL or CON-
TROL-S will pause printing to the screen until another key is
pressed. Setting this bit to %1 prevents pausing, so that nei-
ther NO SCROLL or CONTROL-S will have any effect on
screen output. (The Commodore key can still be used to slow
down printing.) This location is initialized to 0/$00 (pause en-
abled), and no system routine changes the setting of this bit.
Since the screen editor doesn't provide any character code or
escape sequence for disabling the pause feature, you must
change the value here directly if you wish to make use of the
pause disable feature.

248 $P8 SCROLL
Scroll/link control flag
Bit 7 of this location is tested during the screen editor cursor
movement routines to determine whether a new line will be
scrolled onto the output window after printing on the current
bottom line. If the bit is %0, a new blank line will be opened
at the bottom of the screen (and the top line will be scrolled
off the screen) after printing on the bottom line. Setting the bit
to %1 prevents scrolling; after printing on the bottom line, the

80

$FA 250

cursor will wrap around to the top screen line. This bit can be
set to %1 with the ESC M sequence, and reset to %0 with ESC
L.

Bit 6 of this location controls whether physical screen
lines can be linked together to form logical lines. For example,
BASIC allows logical lines up to 160 characters long. If this bit
is %0, linking is allowed. The line link bitmap at 862-865/
$035E-$0361 will indicate which physical lines are part of
longer logical lines. Setting this bit to %1 disables line linking,
in which case no logical line can be more than one physical
line long. This location is initialized to 0/$00 (linking enabled)
during the CINT screen editor initialization routine, and no
system routine changes the setting of this bit. Since the screen
editor doesn't provide a character code or escape sequence for
changing this bit, you must change the value here directly if
you wish to make use of the linking disable feature.

$F9 BEEPER249
Bell enable flag
Bit 7 of this location controls whether or not a tone is pro-
duced when character code 7, the {BELL} character, is printed.
If the bit is %0, then a tone is produced. Setting the bit to %1
prevents the tone. The location is tested during the screen
BSOUT subroutine that handles character 7 [$C98E], The loca-
tion is initialized to 0/$00 (bell enabled) during the CINT
screen editor initialization routine. The flag bit can be set to
%1 using the ESC H sequence, and reset to %0 with ESC G.

250 $FA Unused
This location is unused in the sense that it is not intentionally
altered by any 128 Kernal or BASIC routine. However, a bug
in the screen editor CINT [$C07Bj and SWAPPER [$CD2E]
routines causes this location to be overwritten whenever those
routines are executed. Because those routines are called during
the RUN/STOP-RESTORE sequence, any value you place in
this location will be overwritten any time you press
RUN/ STOP-RESTORE, as well as whenever you switch
screens. Thus, if you use this location in your programs it
should be only as temporary working storage, not for impor-
tant values you might want preserved in the cases mentioned
above.

81

251-254 $FB-$FE

251-254 $FB-$FE Unused
These locations are unused by any 128 ROM routines, and are
thus available for use in your BASIC and machine language
programs. This area is not affected by RUN/STOP-RESTORE,
but remember that all zero-page locations, including these, are
cleared to zero during a reset (unless the RUN/STOP key is
held down during the reset; see the reset routine [$E000] for
details).

255 $FF
This location is used as part of the assembly area for character
strings representing the digits of numeric values. Refer to the
next section for details.

Page 1: System Stack
256-511/$0100-$01FF
This page is the system stack, the area where the 8502
microprocessor stores information such as the return addresses
for interrupts and subroutine calls. Some microprocessors
allow longer stacks or allow the stack to be located at various
places in memory, but 6502-family microprocessors like the
128's 8502 have only one 256-byte stack, and it's always page
1. Unlike other Commodore computers, however, the 128 has
the ability to make the 8502 see page 1 anywhere in memory.
The MMU chip has a feature which allows the processor to
exchange page 1 with another page, so that all references to
page 1 (including the processor's stack manipulations) are di-
rected to the alternate page, and references to addresses in the
alternate page are directed to page 1. See the discussion of the
MMU in Chapter 8 for details. The 128 does not normally
make use of this feature; page 1 is normally seen at the true
page 1 locations here.

The storage of data in the stack is controlled by a register
in the microprocessor called the stack pointer, which serves as
an index to the next available address in the stack. The stack
is filled from top to bottom—from location 511/$01FF down-
ward to 256/$100. When no data is in the stack, the stack
pointer contains 255/$FF, indicating that 511/$01FF is the
first available location. (The pointer is a one-byte index, to
which the microprocessor automatically adds 256/$0100 to get

82

$00FF-$010A 255-266

the actual address in page 1.) When a byte of data is pushed
(added) onto the stack, the stack pointer register is automati-
cally decremented to point to the next available address. When
a byte is pulled (removed) from the stack, the register is auto-
matically incremented. The value is not actually deleted, but
incrementing the stack pointer will cause the next byte pushed
onto the stack to overwrite the old value. The RESET routine
[$EO00] begins by resetting the stack pointer to 255/$FF, effec-
tively emptying the stack.

In addition to the stack's use for processor address infor-
mation, BASIC uses it to hold intermediate values during ex-
pression evaluation. In earlier Commodore computers, the
system stack was also used to hold information for BASIC
statements such as GOSUB and FOR that loop back to another
line. Since every FOR statement requires 18 bytes of stack
space, and every GOSUB or DO requires 5 bytes, only a lim-
ited amount of nesting would be possible before all system
stack space was exhausted. BASIC 7.0 maintains a separate
stack at 2048-2559/$0800-$09FF for FOR, GOSUB, and DO.
This allows BASIC 7.0 to use more deeply nested FOR-NEXT
and DO-LOOP loops and more levels of subroutines—and
hence more complex programs. See Chapter 3 for details of
the BASIC stack.

The 8502 normally uses all of page 1 as stack space, but
BASIC manipulates the stack pointer to allow the 128 to use
portions of this area in other ways. The BASIC cold-start rou-
tine [$4023] resets the stack pointer to 251/$FB, so locations
508-511/$01FC-$01FF are not used by BASIC. The CLR rou-
tine [$51F8], also part of NEW and RUN, resets the stack
pointer to 250/$FA. BASIC limits the stack to 201 bytes, halt-
ing with an error if all BASIC stack space is exhausted. The
portions of this page used for purposes other than the stack
behave like any other part of RAM.

255-266 $00FF-$010A
Assembly area for numeric value strings
The routine [S8E42] which generates a character string repre-
senting the floating-point value in FAC1 uses this area to as-
semble the characters for the digits of the value. The first
character of the string will be either a space (for a positive
value in FAC1) or a minus sign (for a negative value). When
numeric values are being printed, the string is assembled start-

83

256-268 $0100-$010C

ing at 256/$0100. However, when the string of characters for
a line number is assembled, it starts at 255/$00FF. Because
the routine to add the characters here to the string pool as-
sumes that the string starts at 256/$0100, this will cause the
leading space to be omitted for line number values.

256-268 $0100-$010C
Assembly area for disk boot command
The Kernal BOOT_CALL routine [$F890] uses this area to as-
semble the block read command string to be sent to the drive.
The default command string i s U l : 1 3 0 0 1 00 (held in reverse
order) to read the contents of sector 0 of track 1, the first boot
sector. If more boot sectors follow, the track and sector param-
eters will be updated to form the commands to read the addi-
tional sectors.

256-317 $O1OO-$O13D
Tape error log
The Kernal routine which stores blocks of data on tape writes
two identical copies of the data. That way, if errors are de-
tected when the first copy is read back in, it may be possible
to correct that error from the second block. Whenever the rou-
tine to load a block of data from tape [$EAEB] detects an error
in a byte read from the first copy of the block, it stores the ad-
dress of the erroneous byte in this area. Location 158/$9E
serves as an index to the next available address slot. This area
is sufficient to hold 31 error addresses, so a load error occurs
on the first pass only if more than 31 errors are recorded.
When the second copy of the block is read, any address for
which an error was recorded on the first pass will be loaded
with the corresponding byte from the second copy (unless an
error was also detected for that same address in the second
copy; in that case, a load error occurs).

272-290 $0110-$0122
DOS command work area
The routine [$A3C3] to assemble command strings for the var-
ious BASIC DOS support commands such as HEADER, COPY,
and SCRATCH uses this area to hold information about the
type of command string to assemble.

$ 0 2 0 0 - $ 0 2 A 0 512-672

291-310 $0123-$136
PRINT USING work area
The PRINT USING routine [$9520] uses this area to hold
information about the way the output string is to be
formatted.

294 $0126
Command type indicator for PLAY processing
This location is used during the PLAY statement routine
[$6DE1] to hold a value indicating which PLAY command (V,
O, T, X, or U) is currently being processed.

311-507 $0137-$01FB
Stack space used by BASIC
This is the portion of the stack used while BASIC is active.
The BASIC cold-start routine initializes the stack pointer to
251/$FB, but any subsequent NEW will reinitialize it to
250/$FA. Thus, locations 508-511/$01FC-$01FF (and, after
the first NEW, also 5O7/$1FB) are unused and available for
your own programming. BASIC requires that at least 44 bytes
be available in the stack at the start of any expression evalua-
tion. The stack pointer is tested during the main expression
evaluation routine [$77EF]; if it is less than 99/$63, a FOR-
MULA TOO COMPLEX error occurs. (This is a change from
Commodore 64 BASIC, where the same situation would result
in an OUT OF MEMORY error.)

Input Buffer

BUF512-672 $0200-$O2AO
BASIC and monitor input buffer
This 161-byte area is used to hold input for both BASIC and
the monitor. The BASIC input routine [$4F93] allows logical
program lines up to 160 characters long to be entered. A byte
with the value 0/$00 is added following the last character of
the input. If the line starts with a line number, the line here is
tokenized and transferred to the BASIC program text area. An
immediate mode line (one with no line number) is tokenized
and then executed from the buffer. This buffer is also used to
hold input characters for the GET, GET#, GETKEY, INPUT,
and INPUT* statements, which is why those statements are

85

673 $O2A1

not allowed in immediate mode. The monitor main loop
[$B08B] accepts command strings up to 159 characters long,
and also adds a zero byte following the last character of input
to mark the end of the command.

673 $O2A1 Unused
The BASIC and monitor input routines restrict the length of an
input line to 160 characters plus a zero byte to mark the end
of input in the buffer, for a maximum of 161 bytes. Thus, this
location will never be used for input, and is available for other
uses.

Common Indirect Routines
The routines at 674-763/$02A2-$02FB are copied here from
Kernal ROM at 63488-63577/$F800-$F859 by the routine at
57549/$E0CD, part of the reset sequence. The routines are
placed here in page 2 because this is part of the IK block of
memory that is visible in all banks. These routines are the key
to the operation of the 128—they make the memory banking
system possible by allowing a routine in one bank configura-
tion to access data or call routines in another configuration.
For example, these routines allow BASIC ROM routines to use
different blocks of RAM for program text and variables, and to
see program text in areas of RAM that lie at the same ad-
dresses as BASIC ROM itself. These routines are so integral to
the successful operation of the 128 that the system will proba-
bly crash almost immediately if the routines are accidentally
changed or overwritten.

674-686 $02A2-$02AE FETCH
Retrieves a value from any bank
This routine loads the accumulator value with the contents of
a specified location in any bank. To use this routine, you must
set up a two-byte pointer in zero page to hold the address of
the target location, then store the one-byte address of the
zero-page pointer in location 682/$02AA. You can use the Y
register to specify an offset from the pointer address for the
target location. (If no offset is desired, be sure that the Y regis-
ter contains 0/$00.) The X register should contain the MMU
configuration register setting value which will establish a
memory configuration in which the target location is visible.

86

$02AF-$02BD 687-701

1

The routine reads and stashes the current MMU configu-
ration register setting, then uses the value in the X register
upon entry as the new configuration register setting. Next, the
contents of the location specified by the address in the pointer
plus the offset in the Y register are loaded into the accumu-
lator. The MMU configuration register is restored to its original
value before exiting.

This routine is normally called via its related Kernal rou-
tine at 63440/$F7D0, which has a jump table entry at 65396/
$FF74. When calling via the Kernal routine, the accumulator
should contain the zero-page pointer address; the Kernal rou-
tine stores the accumulator value upon entry in 682/$02AA,
performing that setup step for you. The X register should con-
tain a bank number (0-15) rather than an MMU configuration
register setting value, since the Kernal routine also performs
the chore of converting the bank number into a configuration
register value,

687-701 $02AF-$02BD STASH
Stores a value in any bank
This routine stores the contents of the accumulator at a speci-
fied location in any bank. Before calling this routine, you must
set up a two-byte pointer in zero page to hold the address of
the target location, then store the one-byte address of the
2ero-page pointer in location 697/$02B9. You can use the Y
register to specify an offset from the pointer address for the
target address. (If no offset is desired, be sure that the Y regis-
ter contains 0/$00.) The X register should contain the MMU
configuration register setting value which will establish a
memory configuration in which the target location is visible.

The routine reads and stashes the current MMU configu-
ration register setting, then uses the value in the X register
upon entry as the new configuration register setting. Next, the
contents of the accumulator upon entry are stored in the loca-
tion specified by the address in the pointer plus the offset in
the Y register. The MMU configuration register is restored to
its original value before exiting.

This routine is normally called via its related Kernal rou-
tine at 63450/$F7DA, which has a jump table entry at
65399/$FF77. When calling via the Kernal routine, the X reg-
ister should instead contain a bank number (0-15), since the

87

702-716 $02BE-$02CC

Kernal routine performs the chore of converting the bank
number into an MMU configuration register setting value.

702-716 $02BE-$02CC CMPARE
Compares accumulator contents against a value from any bank
This routine compares the accumulator value against the con-
tents of a specified location in any bank. Before calling this
routine, you must set up a two-byte pointer in zero page to
hold the address of the target location, then store the one-byte
address of the zero-page pointer in location 712/$02C8. You
can use the Y register to specify an offset from the pointer ad-
dress for the target address, (If no offset is desired, be sure
that the Y register contains 0/$00.) The X register should con-
tain the MMU configuration register setting value which will
establish a memory configuration in which the target location
is visible.

This routine reads and stashes the current MMU configu-
ration register setting, then uses the value in the X register
upon entry as the new configuration register setting. Next, the
value in the accumulator upon entry is compared against the
contents of the location specified by the address in the pointer
plus the offset in the Y register. The MMU configuration regis-
ter is restored to its original value before exiting. The status
register value will reflect the result of the comparison.

This routine is normally called via its related Kernal rou-
tine at 63459/$F7E3, which has a jump table entry at 65402/
$FF7A. When calling via the Kernal routine, the X register
should instead contain a bank number (0-15), since that rou-
tine performs the chore of converting the bank number into an
MMU configuration register setting value.

717-738 $02CD-$02E2 JSRFAR
Calls a subroutine in any bank
(This routine has a Kernal jump table entry at 65390/$FF6E.)
The routine here will jump to a subroutine at any address in
any standard bank configuration. Upon completion of the tar-
get routine, control is returned to the routine which called
JSRFAR, just like a JSR. However, this routine leaves the sys-
tem in the bank 15 configuration, so a routine that uses
JSRFAR must be located in an area of memory visible in the
bank 15 configuration for JSRFAR to properly return to the
calling routine.

88

I $02E3-$02FB 739-763

1

Before calling the routine you must load location 2/$02
with the bank number (0-15) of the target routine and loca-
tions 3-4/$03-$04 with the address of the target routine. In
contrast to the usual low-byte/high-byte format, location
3/$03 should be loaded with the high byte of the address and
location 4/$04 with the low byte. Location 5/$05 should be
loaded with the value you want in the status register when the
target routine is called (use 0/$00 if you don't want any status
register bits set). Optionally, you can also load locations
6-8/$06-$08 with any values you wish the accumulator, X
register, and Y register, respectively, to have when the target
routine is called.

The routine calls JMPFAR to call the subroutine addressed
in locations 3-4 in the bank specified in location 2 and with
the status register value specified in location 5 and processor
register values from locations 6-8. Upon return from the target
routine, the exit values of the accumulator, X register, and Y
register are stored in location 6-8/$06-$08, respectively. The
value of the status register upon exit from the target routine is
stored in location 5/$05, and the exit value of the processor
stack pointer is recorded in location 9/$09. Finally, the routine
switches the system to the bank 15 configuration before re-
turning to the calling routine.

739-763 $02E3-$02FB JMPFAR
Jumps to a routine in any bank
(This routine has a Kernal jump table entry at 65393/SFF71.)
The routine here will jump to a routine at any address in any
standard bank configuration. Before calling the routine you
must load location 2/$02 with the bank number (0-15) of the
target routine and locations 3-4/$03-$04 with the address of
the target routine. In contrast to the usual low-byte/high-byte
format, location 3/$03 should be loaded with the high byte of
the address and location 4/$04 with the low byte. Location
5/$05 should be loaded with the value you want in the status
register when the target routine is called (use 0/$00 if you
don't want any status register bits set). Optionally, you can
also load locations 6-8/$06-$08 with any values you wish the
accumulator, X register, and Y register, respectively, to have
when the target routine is called. The routine pushes the ad-
dress and status register values onto the stack, converts the
bank number value to a configuration register value, stores

89

764-765 $02FC-$02FD $0304-$0305 772-773

that value in the MMU configuration register, loads the pro-
cessor registers from locations 6-8, and executes an RTI in-
struction, which causes the processor to retrieve status register
and address values from the stack and resume processing at
the specified address.

Indirect Vectors
The next 66 locations are indirect vectors for a variety of
BASIC, Kernal, and screen editor routines. An indirect vector
is a pair of locations that hold an address for an indirect jump
instruction, such as JMP ($0300). The target address of the
JMP will be determined by the value in the specified indirect
vector. Having ROM routines jump through indirect vectors
greatly increases the flexibility of the computer. Even though it
isn't possible to change a routine in ROM, it's possible to add
to or modify a routine that has an indirect vector by redirect-
ing the vector to a RAM-based routine.

764-765 $02FC-$02FD ESC_FN_VEC
Indirect vector in extended function execution routine
The indirect jump through this vector is taken in the extended
function handling subroutine when a two-byte extended func-
tion token is found for which the second byte is greater than
the largest standard extended function token (10/$0A). When
the jump is taken, the accumulator will hold the out-of-range
token value and the status register carry bit will be set. If carry
is not clear upon return from the jump, a SYNTAX error mes-
sage will be generated. The vector normally holds 19576/
$4C78, the address of the instruction following the call to this
vector. This doesn't change the carry setting, so out-of-range
extended function tokens normally result in an error message.
If you add new functions to BASIC, you'll need to change this
vector to point to the routine which executes your new func-
tion. See Chapter 5 for an example.

766-767 $02FE-$02FF BNKVEC
Reserved indirect vector
These two locations are not used by system ROM routines.
Commodore literature indicates that they are reserved for use
as an indirect vector for function ROM routines.

90

BASIC Indirect Vectors
The next nine vectors, 768-785/$0300-$0311, are used in
BASIC statement processing routines. The default values for
these vectors are copied from a table at 16999-17016/
$4267-$4278 in BASIC ROM by the BASIC vector initializa-
tion routine [$4251], part of the cold-start sequence. Thus,
unlike the Kernal indirect vectors, the BASIC vectors are not
affected by the RUN/STOP-RESTORE sequence. Any changes
you make to the vectors will remain in effect until the next
cold start of BASIC, as during a reset.

768-769 $ 0 3 0 0 - 9 0 3 0 1 IERROR
Indirect vector for BASIC error handling routine
In BASIC ROM, the jump through this vector is taken at the
beginning of the error handling routine (ERROR [$4D3C]). At
the point the jump is taken, the X register will contain the cur-
rent BASIC error number (0-41, or 128 to print READY) and
the accumulator will hold the last character read from program
text. The default target address of the vector is 19775/$4D3F,
which simply reenters the error handling routine at the point
immediately following the jump. You can redirect this vector
to change the way BASIC handles errors.

In addition to modifying error handling, you can also use
this vector to provide an alternate method of adding com-
mands to BASIC.

770-771 $0302-$0303 IMAIN
Indirect vector in main BASIC loop
The jump through this indirect vector is taken in the main
BASIC direct mode routine [$4DB7] at the point immediately
after the READY prompt has been printed and the mode flag
(127/$7F) has been set for immediate mode. The vector nor-
mally holds 19910/$4DC6, the address of the instruction im-
mediately following the indirect jump. You can redirect this
vector to a routine of your own if you wish to change the be-
havior of BASIC'S immediate mode.

772-773 $0304-$0305 ICRNCH
Indirect vector in BASIC tokenization routine
The jump through this indirect vector is taken at the begin-
ning of the CRUNCH routine [$430A], which is responsible
for converting lines of input text into tokenized program lines.

91

774-775 $0306-$0307 $0310-$0311 784-785

The vector normally holds 17165/S430D, the address of the
instruction immediately following the indirect jump. You can
redirect this vector to a routine of your own if you wish to
change the way program lines are tokenized.

774-775 $0306-$0307 IQPLOP
Indirect vector in BASIC detokenization routine
The jump through this indirect vector is taken in the QPLOP
routine [$5123] at the point where the accumulator contains
the next character to be listed from the program line. The vec-
tor normally holds 20817/S5151, the address of the instruc-
tion immediately following the indirect jump. You can redirect
this vector to a routine of your own if you wish to change the
way program lines are listed.

776-777 $0308-$0309 IGONE
Indirect vector in BASIC execution routine
The jump through this indirect vector is taken at the begin-
ning of the GONE routine [S4F92], the routine to execute a
program line. The vector normally holds 19106/$4AA2, the
address of the instruction immediately following the indirect
jump. You can redirect this vector to a routine of your own if
you wish to change the way program lines are executed.

778-779 $030A-$030B IEVAL
Indirect vector in BASIC evaluation routine
The jump through this indirect vector is taken at the begin-
ning of the EVAL routine, which determines the value of the
next variable, string, or number in the program. The vector
normally holds 30938/$78DA, the address of the instruction
immediately following the indirect jump. You can redirect this
vector to a routine of your own if you wish to change the way
values are evaluated.

780-781 $030C-$030D ICRNCH2
Indirect vector for tokenizing additional keywords
The jump through this vector is taken in the tokenization rou-
tine at the point where the first character of the keyword has
been read into the accumulator and the carry bit has been set.
If carry is still set upon return from this jump, the tokenization
process will proceed normally. The vector normally holds
17185/$4321, the address of the instruction immediately fol-

92

lowing the jump. Thus, the jump normally has no effect. If
you want to add extended tokens to BASIC, you should redi-
rect this vector to your routine to tokenize the new keywords.
The routine should compare the text pointed to by 61-62/
$3D-$3E with the target keyword. If a match is found, your
routine should return with the second byte of the two-byte ex-
tended token in the accumulator. The X register should be set
to indicate whether the keyword is a statement or a function.
X should be set to 0/$00 for a function, in which case the first
byte will be 206/$CE, or to 255/$FF for a statement, in which
case the first byte will be 254/$FE. The Y register should con-
tain the length of the filename. Finally, you should make sure
that the carry bit is clear upon exit so that your new token will
be properly processed.

782-783 $030E-$030F IQPLOP2
Indirect vector for detokenizing additional keywords
The jump through this indirect vector is taken in the routine
that lists BASIC program lines at the point where two-byte ex-
tended statement or function tokens have been found which
are greater than the largest standard tokens. When the jump is
taken, the accumulator will hold the second byte of the of-
fending token and the X register will hold 0/$00 if the first
byte was 206/$CE, indicating an extended function token, or
255/$FF if the first byte was 254/$FE, indicating an extended
statement token. The status register carry bit will also be set. If
that bit is still set upon return from this indirect jump, the
character will simply be printed. However, if carry is cleared,
the extended keyword will be listed. The vector normally
holds 20941/S51CD, the address of the instruction immedi-
ately following the indirect jump, so carry will normally re-
main set. If you add new extended keywords to BASIC, you
should change this vector to point to the routine to support
listing the keywords.

784-785 $0310-$0311 IGONE2
Indirect vector in extended statement execution subroutine
The jump through this indirect vector is taken in the statement
execution routine at the point where a two-byte extended
statement token has been found with a value greater than one
of the standard extended statement tokens (second byte
greater than 38/$26). When the jump is taken, the accumu-

93

786-787 $0312-$0313 $031A-$031B 794-795

lator will hold the second byte of the extended token and the
carry bit will be set. If the carry bit is not clear upon return, a
SYNTAX error will be generated. The vector normally holds
19369/$4BA9, the address of the instruction immediately fol-
lowing the indirect jump. Thus, the out-of-range token will
normally cause an error. If you add new extended-token state-
ments to BASIC, you should change this vector to point to the
address of the routine which executes the new statement. See
Chapter 5 for an example.

786-787 $0312-$0313 Unused
These two locations are not used for any system vector, and
are thus available for your programming. For example, you
could use these locations to set up an indirect vector in one of
your own programs, or to store the original value when
changing one of the other vectors.

Kernal Indirect Vectors
The next 16 vectors, 788-819/$0314-$0333, are initialized
from a table at 57459-57490/$E073-$E092 in Kemal ROM by
the RESTOR routine [$E056]. The RESTOR routine is called
during both the reset and RUN/STOP-RESTORE sequences,
so either of those will reinitialize the vectors. The values in
this vector table can be read or modified using the Kernal
VECTOR routine [$E05BJ.

788-789 $0314-$03l5 IIR9
Indirect vector to IRQ interrupt handling routine
When an IRQ interrupt occurs or a BRK instruction is exe-
cuted, a jump is automatically taken through the processor
IRQ vector at 65534/$FFFE to the handling routine at 65303/
$FF17. That routine stores the accumulator, X and Y register,
and bank configuration values on the stack, then checks
whether the routine was called as the result of an IRQ or a
BRK. If an IRQ was responsible, a jump is taken through this
indirect vector. The vector normally holds 64101/$FA65, the
address of the standard system IRQ routine. You can redirect
this vector to a routine of your own to add custom steps to the
IRQ process. However, your target routine must be visible in
bank 15, since that is how memory will be configured when

the jump through this vector is taken. If your routine does not
jump to the standard IRQ handler, it must exit by jumping to
the common IRQ exit routine at 65331/$FF33.

790-791 $0316-$0317 IBRK
Indirect vector to BRK instruction handling
When an IRQ interrupt occurs or a BRK instruction is exe-
cuted, a jump is automatically taken through the processor
IRQ vector at 65534/$FFFE to the handling routine at 65303/
$FF17. That routine stores the accumulator, X and Y register,
and bank configuration values on the stack, then checks
whether the routine was called as the result of an IRQ or a
BRK. If the execution of a BRK was responsible, a jump is
taken through this indirect vector. The vector normally holds
45059/$B003, the address of the BRK entry into the machine
language monitor. You can redirect this vector to a routine of
your own if you want some other handling of BRK
instructions.

792-793 $0318-$0319 INMI
Indirect vector to NMI interrupt handling routine
When an NMI interrupt occurs, a jump is automatically taken
through the processor NMI vector at 65530/$FFFA to the NMI
handling routine at 65285/$FF05. That routine stores the ac-
cumulator, X and Y register, and bank configuration values on
the stack, then configures the system for bank 15 and takes a
jump through this indirect vector. The vector normally holds
64064/$FA40, the address of the standard system NMI service
routine. You can redirect this vector to a routine of your own
to add custom steps to the NMI process. However, your rou-
tine must be in an area of memory visible in bank 15, since
that is how memory will be configured when the jump is
taken. If your routine does not jump to the standard NMI han-
dler, it must exit by jumping to the common IRQ exit routine
at65331/$FF33.

794-795 $031A-$031B IOPEN
Indirect vector to Kernal OPEN routine
This vector is the normal link between the Kernal jump table
entry at 65472/$FFC0 and the OPEN routine at 61373/
$EFBD, You can redirect this vector to a routine of your own if
you wish to modify the behavior of OPEN.

95

796-797 $O31C-$O31D

796-797 $031C-$031D ICLOSE
Indirect vector to Kernal CLOSE routine
This vector is the normal link between the Kernal jump table
entry at 65475/$FFC3 and the CLOSE routine at 61832/
$F188. You can redirect this vector to a routine of your own if
you wish to modify the behavior of CLOSE. When the jump is
taken, the accumulator should hold the number of the logical
file to be closed.

798-799 $031E-$O3IF ICHKIN
Indirect vector to Kernal CHKIN routine
This vector is the normal link between the Kernal jump table
entry at 65478/$FFC6 and the CHKIN routine at 61702/
$F106. You can redirect this vector to a routine of your own if
you wish to modify the behavior of CHKIN. When the jump is
taken, the X register should hold the number of the logical file
selected as the input source.

800-801 $0320-$0321 ICKOUT
Indirect vector to Kernal CKOUT routine
This vector is the normal link between the Kernal jump table
entry at 65481/$FFC9 and the CKOUT routine at 61772/
$F14C. You can redirect this vector to a routine of your own if
you wish to modify the behavior of CKOUT. When the jump
is taken, the X register should hold the number of the logical
file selected as the output source.

802-803 S 0 3 2 2 - S 0 3 2 3 ICLRCH
Indirect vector to Kernal CLRCH routine
This vector is the normal link between the Kernal jump table
entry at 65484/$FFCC and the CLRCH routine at 61990/
$F226. You can redirect this vector to a routine of your own if
you wish to modify the behavior of CLRCH.

804-805 S0324-$0325 IBASIN
Indirect vector to Kernal BASIN routine
This vector is the normal link between the Kernal jump table
entry at 65487/$FFCE and the BASIN routine at 61190/
$EF06. You can redirect this vector to a routine of your own if
you wish to modify the behavior of BASIN. The routines
which call BASIN expect it to return a character in the
accumulator.

96

I $032E-$032F 814-815

806-807 $0326-$0327 IBSOUT
Indirect vector to Kernal BSOUT routine
This vector is the normal link between the Kernal jump table
entry at 65490/$FFD2 and the BSOUT routine at 61305/
$EF79. You can redirect this vector to a routine of your own if
you wish to modify the behavior of BSOUT. When this rou-
tine is called, the value to be output should be in the
accumulator.

808-809 $0328-^0329 ISTOP
Indirect vector to Kernal STOP routine
This vector is the normal link between the Kernal jump table
entry at 655O5/$FFE1 and the STOP routine at 63086/$F66E.
You can redirect this vector to a routine of your own if you
wish to modify the behavior of STOP. The routines which call
STOP expect it to return with the status register Z bit set if the
RUN/STOP key was pressed, or clear otherwise.

810-811 $ 0 3 2 A - $ 0 3 2 B IGETIN
Indirect vector to Kernal GETIN routine
This vector is the normal link between the Kernal jump table
entry at 65508/$FFE4 and the GETIN routine at 61163/
$EEEB. You can redirect this vector to a routine of your own if
you wish to modify the behavior of GETIN. The routines
which call GETIN expect it to return a character code in the
accumulator.

812-813 $032C-$032D ICLALL
Indirect vector to Kernal CLALL routine
This vector is the normal link between the Kernal jump table
entry at 65511/$FFE7 and the CLALL routine 61986/$F222.
You can redirect this vector to a routine of your own if you
wish to modify the behavior of CLALL,

814-815 $032E-$032F IEXMON
Indirect vector in monitor command execution routine
This indirect vector appears in the machine language monitor's
main loop [$B08B] at the point where the first nonspace char-
acter has been read from the input buffer and is ready to be
interpreted as a command. The vector normally holds the ad-
dress 45062/$B006, which in turn is a vector back to 45234/
$B0B2, the address immediately following the indirect jump.

97

816-817 $0330-$0331

However you can redirect this vector to a routine of your own
if you wish to add commands to the machine language moni-
tor. The following example adds two new monitor com-
mands—P, which behaves like D (disassemble) but routes
output to the printer, and Q, which closes the file to the
printer:

;Redirect vector to new handling routine0D00
0D02
0D05
OD07
ODOA
ODOB
ODOD
ODOF
0D11
0D14
0D17
0D1A
GD1C
0D1E
0D2O
0D21
0D23
0D26
0D28
0D2B
0D2E
0D30
D033

LDA
STA
LDA
STA
RTS
CMP
BNE
LDA
JSR
JSR
JMP
CMP
BNE
LDA
TAX
LDY
JSR
LDA
JSR
JSR
LDA
JSR
LDA

#$0B
$032E
#$0D
$032F

#$51
$OD1A
#$04
$FFC3
$FFCC
$B08B
#$50
$0D3S
#$04

#00
$FFBA
#$00
$FFBD
$FFCO
#$04
$FFC9
#$44

;Is character code for Q?

;If so, close logical file 4

;Restore normal I/O channels (CLRCH)
;Retum to monitor main loop
;Is character code for P?

;H so, OPEN 4,4,0

0D35 JMP $B006

;Set logical file 4 for output

;Change monitor command to D
(disassemble)
;Return to monitor command processing
loop

816-817 $0330-$0331 ILOAD
Indirect vector in Kernal LOAD routine
This indirect vector appears in the Kernal LOAD routine
[$F265] at the point after the starting address (in X and Y
when the routine is entered) has been stored in 195-196/
$C3-$C4. The accumulator should still contain a value indicat-
ing whether the operation is a load or a verify (0/$00 for load,
nonzero for verify). The vector normally holds 62060/$F26C,
the address immediately following the indirect jump. You can
redirect this vector to a routine of your own if you wish to
modify the behavior of LOAD.

98

$0336-$0337 822-823

818-819 $0332-$0333 ISAVE
Indirect vector in Kernal SAVE routine
This indirect vector appears in the Kernal SAVE routine
[$F53E] at the point after the ending address has been stored
in 174-175/$AE-$AF and the starting address has been stored
in 193-194/$C1-$C2. The vector normally holds 62798/
$F54E, the address immediately following the indirect jump.
You can redirect this vector to a routine of your own if you
wish to modify the behavior of SAVE.

Screen Editor Indirect Vectors
The next five vectors, 820-829/$0334-$033D, are copied from
a table at $C065-$C06E in screen editor ROM by the CINT
routine [$C07B] during the reset sequence. CINT is also part of
RUN/STOP-RESTORE, but a flag in the routine is normally
used to skip the vector initialization step in this case. As a re-
sult, vector addresses aren't usually changed by RUN/STOP-
RESTORE.

820-821 $0334-$0335 CTLVEC
Indirect vector in screen BSOUT handling
The jump through this indirect vector is taken as the first step
in the screen BSOUT subroutine [$C7B6] which processes
character code values less than 32/$20. At the time the jump
is taken, the accumulator holds the current character code. The
vector normally holds 51129/$C7B9, the address immediately
following the indirect jump. You can change this vector to
point to a routine of your own if you wish to change the
printing behavior of character codes in the range 0-31/
$00-$lF. All codes in this range perform cursor movements,
color changes, or other control functions rather than printing
characters. If you wish to add new control functions, codes 0,
1, 3, 4, 6, 16, 21-23, 25, and 26 are currently unused.

822-823 $0336-$0337 SHFVEC
Indirect vector in screen BSOUT handling
The jump through this indirect vector is taken as the first step
in the screen BSOUT subroutine [$C802] which processes
character code values greater than 127/$7F. At the time the
jump is taken, the accumulator holds the current character
code. The vector normally holds 51205/$C805, the address

99

824-825 $0338-$0339

immediately following the indirect jump. You can change this
vector to point to a routine of your own if you wish to change
the printing behavior of character codes in the range
128-255/$80-$FF. Codes 128-159/$81-$9F perform cursor
movements, color changes, or other control functions rather
than printing characters. If you wish to add new control func-
tions, codes 128, 131, and 132 are currently unused.

824-825 $0338-$0339 ESCVEC
Indirect vector in ESC sequence handling routine
The jump through this indirect vector is taken as the first step
in the screen BSOUT subroutine [$C9BE] which processes ESC
(escape) key sequences. At the time the jump is taken, a test
will have determined that the previous character was ESC
(code 27/$lB). The accumulator holds the current character
code, the one which followed ESC. The vector normally holds
51649/$C9C1, the address immediately following the indirect
jump. You can redirect this vector to add your own ESC se-
quences. The following example adds ESC T, which moves the
position of the bitmap/text division of a screen line up one
row each time the sequence is used:

1400 LDA #$0B ;Redlrect vector to handling routine
1402 STA $0338
1405 LDA #$14
1407 STA $0339
140A RTS
140B CMP #$5E ;Is character t?
140D BEQ $1412
140F JMP $C9C1 ;If not, jump to normal processing

routine
1412 LDA $D8 ;Is a split screen in use?
1414 AND #$40
1416 BEQ $140F ;If not, use normal processing routine
1418 LDA $0A34 ;Is the split already at the top row of the

screen?
141B CMP #$3A
141D BCC $140F ;If so, ignore this sequence
141F SBC #$08 ;Move the split position up one row (8

scan lines)
1421 STA $0A34
1424 RTS

100

$033C-$O33D 828-829

826-827 $033A-$033B KEYVEC
Indirect vector in keyboard scanning routine
The jump through this indirect vector is taken during the
SCNKEY routine [$C55D] at the point following completion of
the keyscan and the evaluation of the shift key status. At the
point the jump is taken, the accumulator (along with location
212/$D4) will contain the current keyboard matrix code, and
location 211/$D3 will reflect the current shift key status. The
vector normally holds the address 5O657/$C5E1, the point in
the keyscan routine immediately following the indirect jump,
but you can redirect the vector if you wish to change the be-
havior of the keyscan routine.

828-829 $033C-$033D KEYCHK
Indirect vector in keyboard scanning routine
The jump through this indirect vector is taken during the
SCNKEY routine [$C55D] after the character code for the
keypress has been read from the decoding table and immedi-
ately before the test for a programmable key. At the point the
jump is taken, the accumulator will contain the character code
corresponding to the current keypress and the X register will
contain the current shift key status (from 211/$D3). The vec-
tor normally holds 50861/$C6AD, the point in the keyscan
routine immediately following the indirect jump, but you can
redirect this pointer to modify the behavior of the keyscan.

One use of this vector is to disable programmable keys.
While the definition strings are handy, sometimes—particu-
larly when you are adapting programs from the Commodore
64—you might like for them to instead generate their standard
character codes. One way to achieve this is to change this
pointer so that the test for programmable keys is bypassed:

POKE 828,183
This changes the low byte of the pointer so that the target ad-
dress becomes 50871/$C6B7, the point in the routine immedi-
ately beyond the test for programmable keys.

Screen Editor Tables
Locations 830-865/$033E-$0361 are the domain of the screen
editor.

101

830-841 $033E-$0349 $034A-$0353 842-851

830-841 $033E-$0349 DECODE
Keyboard table pointers
These six 2-byte pointers hold the starting addresses of the 89-
byte tables used to translate the matrix code for the current
keypress into a character code:
Pointer Shift pattern
830-831/$033E-$033F Unshifted

SHIFT
Commodore
CONTROL
ALT

832-833/$0340-$0341
834-835/$0342-$0343
836-837/$0344-$0345
838-839/$0346-$0347

840-841/$0348-$0349

Default table address
64128/$FA80
64217/$FAD9
64306/SFB32
64395/$FB8B
64128/$FA80 (same as
unshifted)
64484/$FBE4CAPS LOCK

The status of the five shift keys, recorded in 211/$D3, is used
to select one of the table addresses from this area. If no shift
key is pressed, the unshifted table is used. If one shift key is
pressed, the appropriate decoding table is selected. If more
than one shift key is pressed simultaneously, the table is se-
lected as follows: CONTROL has the highest priority; when it
is pressed in combination with any other shift keys, the CON-
TROL table is used. The SHIFT and Commodore keys are next
in priority; however, when they are pressed simultaneously,
no decoding table is selected (although the combination may
cause character set switching). ALT and CAPS LOCK have the
lowest priority. They are effective in selecting the decoding ta-
ble only if no other shift keys are being pressed. If pressed
simultaneously, both are ignored and the unshifted table is
used. Once a table is selected, its address is loaded into
204-205/$CC-$CD, and the current matrix code in 212/$D4
is used as an offset to the specific character code to be re-
trieved from the table.

The default decoding table addresses are copied here from
a table at 49263/$C06F in screen editor ROM by the CINT
screen editor initialization routine [$C07B] during the reset se-
quence. CINT is also part of the RUN/STOP-RESTORE se-
quence, but it includes a flag that normally prevents the
vectors from being reinitialized in that case. To redefine the
128 keyboard, you need only set up a new decoding table in
RAM and change one of the address values here to point to
the new table. For example, if you've used the CAPS LOCK
key, you've probably discovered that it doesn't appear to af-
fect the Q key. Actually, the problem is that whoever prepared

the CAPS LOCK decoding table used the wrong value for the
Q key entry. The following shows how to fix the CAPS-Q bug
by setting up a new copy of the decoding table for that shift
pattern:
100 REM ** COPY CAPS LOCK TABLE TO RAM
110 FOR 1=0 TO 88:POKE 6912 + I,PEEK(64484 + I):NEXT
120 REM ** CHANGE INCORRECT CHARACTER CODE FOR Q
130 POKE 6912 + 62,209
140 REM ** REDIRECT POINTER TO NEW TABLE
150 POKE 840,0:POKE 841,27

A custom table should consist of 89 values in matrix code
order. Refer to Tables 9-1-9-5 for a listing of the default ta-
bles. The final value in the table should be 255/$FF, and you
should be sure to include the shift key codes in the proper lo-
cations. The following program sets up a Dvorak-style
keyboard:

100 FOR 1=0 TO 88:READ K:POKE 691.2 + 1 ,K:NEXT
110 POKE 830,0:POKE S31,27:END
120 DATA 20 , 1 3 , 2 9 , 136 , 1 3 3 , 134 , 135 , 1 7 , 5 1 , 44
130 DATA 6 5 , 5 2 , 5 9 , 7 9 , 4 6 , I , 5 3 , 8 0 , 6 9 , 54
140 DATA 74 , 8 5 , 8 9 , 8 1 , 5 5 , 70 , 7 3 , 56 , 8 8 , 68
150 DATA 7 1 , 7 5 , 5 7 , 6 7 , 7 2 , 4 8 , 7 7 , 84 , 8 2 , 66
160 DATA 4 3 , 76 , 7 8 , 4 5 , 8 6 , 8 3 , 4 7 , 8 7 , 9 2 , 42
170 DATA 5 9 , 19 , 1 , 6 1 , 94 , 9 0 , 4 9 , 9 5 , 4 , 50
180 DATA 32 , 2, 3 9 , 3, 132, 5 6 , 5 3 , 9, 50 , 52
190 DATA 55 , 4 9 , 2 7 , 4 3 , 4 5 , 10 , 1 3 , 54 , 5 7 , 51
200 DATA 8, 4 8 , 4 6 , 145 , 1 7 , 1 5 7 , 2 9 , 2 5 5 , 255

842-851 $034A-$0353 KEYBUF
Keyboard buffer
This ten-byte area is the keyboard buffer. When the SCNKEY
routine [$C55D] detects a valid keypress, it generates a cor-
responding character code. The character code is then stored
in this buffer to await processing. (The Kernal GETIN and BA-
SIN routines are normally used to retrieve characters from this
buffer.) Location 208/$D0 holds the number of characters cur-
rently waiting in the buffer. The maximum number of charac-
ters that can be held in the buffer is determined by the value
in location 2592/$0A20. If the value there is greater than 10,
the keyboard buffer will overwrite the following memory
areas such as the tab stop bitmap. When the value in 208/$DO
equals the value in 2592/$0A20, the buffer is full; any further

102 103

842-851 $034A-$0353 $035E-$0361 862-865

keypresses will be ignored until one or more characters are re-
moved from the buffer.

This key buffering system allows for a powerful program-
ming technique known as the dynamic keyboard. By storing
character code values in the buffer and storing the number of
characters in 208/$D0, a program can appear to type on the
keyboard. For example, the following lines add a default an-
swer to the INPUT prompt:
200 POKE 842,89: POKE 208,1: REM PLACE Y IN BUFFER
210 INPUT'ARE YOU SURE";A$
When the INPUT statement begins to look for characters, it
will find the Y already in the buffer.

An even more powerful use of the dynamic keyboard
technique is to allow a program to execute a series of com-
mands after it ends. When a program is finished executing,
BASIC looks to the keyboard buffer for the characters of the
next command. Thus, any characters placed in the buffer
while a program is running will effectively be typed if the pro-
gram ends. Since the buffer can hold only ten characters, the
common practice is to print commands at carefully planned
places on the screen, then fill the buffer with cursor move-
ment and RETURN characters to execute the commands. The
following program illustrates this technique. It creates DATA
statements for one of the sprite patterns. You can adapt the
program for your own needs by changing the values in line
10. AD is the starting address of the data, NI is the number of
DATA items to be generated, and LN is the line number of
the first DATA statement to be generated. The program prints
a DATA line and a GOTO statement on the screen, then
places {HOME} {RETURN} {RETURN} in the buffer and ends.
The buffered characters are executed, entering the DATA line
and restarting the program.

10 AD=3584:NI=64:LN=100!l=0
20 IF I=>NI THEN END
30 PRINT"[CLR}";LN;"DATA";:LN=LN+I0:J=0
40 PRINT P E E K (A D + I) ; : I = I + 1 : I P I=>NI THEN 60
50 J = J + 1 ; I F J<8 THEN PRINT"{LEFT},";:GOTO 40
60 PRINT:PRINT"GOTO 20"
70 POKE 842,I9:POKE 843,13:POKE 844,.13:POKE 2 0 3 , 3 : E

ND

104 A.

852-861 $0354-$035D TABMAP
Tab stop bitmap
These ten bytes provide an 80-bit map of the display's hori-
zontal character positions. Each horizontal position in the cur-
rently active display has a corresponding bit in the map. For
the VIC chip's 40-column display, only the first five bytes (40
bits) are used. When a bit is set to % 1 , a tab stop is estab-
lished at the corresponding screen column. Printing the TAB
character, code 9/$09, or pressing the TAB key will move the
cursor rightward to the next tab stop (or the right window
margin if no tab stops are set between the current cursor posi-
tion and the right margin).

During the CINT screen editor initialization sequence, all
locations in the map are set to 128/$80, which establishes a
tab stop every eighth column. Printing character code 24/$18
(or pressing SHIFT-TAB) toggles the map bit corresponding to
the current cursor column, setting a tab stop if the bit was pre-
viously %0 or clearing the tab stop if the bit was previously
% 1 . The ESC Z sequence can be used to clear all tab stops (all
locations in the map will be filled with 0/$00), and the ESC Y
sequence can be used to restore default tab stops (all locations
in the map will be filled with 128/S80).

When the active display is switched, screen editor SWAP-
PER routine [$CD2E] exchanges the contents of this area with
the contents of locations 2656-2665/$0A60-$0A69, the stor-
age area for the inactive display tab stop bitmap. Thus, tab
stop settings are preserved while the screen is inactive,

862-865 $035E-$0361 LNKMAP
Line link bitmap
These four bytes are used to provide a 25-bit map of the 25
rows of the active screen display (bits 0-6 of location
865/$361 are unused). Each row of the currently active dis-
play has a corresponding bit in the map. When a bit is set to
% 1 , the corresponding row is linked to the row above as part
of a logical line. Bits set to %0 indicate unlinked lines (or rows
that are the first physical line of a logical line). These locations
are cleared to 0/$00, unlinking all lines, whenever the output
window is cleared or reset to full screen size, or whenever the
screen editor WINDOW routine is used to change the size of
the output window. A screen line is normally linked to the
one above when the cursor moves onto the line by wrapping

105

866-875 S0362-S036B

from the right margin of the line above. Line linking can be
disabled by setting the flag bit in location 248/$F8.

When the active display is switched, the screen editor
SWAPPER routine [$CD2E] exchanges the contents of this
area with the contents of locations 2666-2669/$0A6A-$0A6D,
the storage area for the inactive display line link bitmap. Thus,
the line link status is preserved when the screen is inactive.

Kernal File Tables
The following three ten-byte tables hold information on any
currently open logical files. The three tables are parallel; the
entry for a particular file will appear at the same position in
all three tables. Location 152/$98 serves as an index to the
next available entry in the tables. The fact that there are only
ten bytes per table means that no more than ten logical files
may be opened simultaneously.

866-875 $0362-$036B LATBL
Logical file number table for currently open files
When a logical file is opened, the OPEN routine [$EFBD] ex-
amines the contents of this table. A FILE OPEN error occurs if
an existing file already uses the specified logical file number,
and a TOO MANY FILES error occurs if ten files are already
open. Otherwise, the logical file number for the file is stored
in the next available entry in this table. When the Kernal
CHKIN [$F106] or CKOUT [$F14C] routines are used to select
a logical file for input or output, this table is searched for the
specified logical file number. A FILE NOT OPEN error occurs
if the file number is not found in the table. Otherwise, the cor-
responding device number and secondary address will be read
from the respective tables. When a file is closed, the Kernal
CLOSE routine [$F188] removes the file's entry from this table.

The Kernal includes a routine [LKUPLA, $F79D] to search
for a particular file number in this table.

876-885 $036C-$0375 DNTBL
Device number table for currently open files
When a logical file is opened, the OPEN routine [$EFBD]
stores the device number for the file in the next available en-
try in this table. When the Kernal CHKIN [$F106] or CKOUT
[$F14C] routines are used to select a logical file for input or

106

$0380-$039E 896-926

output, the device number for the selected file will be read
from this table. When a file is closed, the Kernal CLOSE rou-
tine [$F188] removes the file's entry from this table.

886-895 $0376-$037F SATBL
Secondary address table for currently open files
When a logical file is opened, the OPEN routine [$EFBD] will
OR the specified secondary address for the file with the value
96/$60, then store the result in the next available entry in this
table. When the Kernal CHKIN [$F106] or CKOUT [$F14C]
routines are used to select a logical file for input or output, the
secondary address for the selected file will be read from this
table. When a file is closed, the Kernal CLOSE routine [$F188]
removes the file's entry from this table.

The Kernal includes a routine [LKUPSA, $F786] to search
for a particular secondary address in this table.

BASIC Working Storage
The remainder of page 3, locations 896-1023/$0380-$03FF, is
used to hold BASIC character retrieval subroutines and to
store values for a variety of BASIC routines. The subroutines
in locations 896-980/$0380-$03D4 are copied here from loca-
tions 17017-17101/$4279-$42CD in BASIC ROM during the
BASIC cold-start sequence. The routines are not reinitialized
by RUN/STOP-RESTORE.

896-926 $0380-$039E CHRGET
Main BASIC character retrieval routine
This is BASIC'S primary routine for reading program text for
interpretation and execution. The routine is designed to re-
trieve the next nonspace character from a BASIC line (in bank
0), and to return information about the type of character re-
trieved. The routine begins by incrementing the current ad-
dress in the text pointer at locations 61-62/$3D-$3E. The
system is set for the bank 0 configuration, the value at the lo-
cation specified in the pointer is loaded into the accumulator,
and the system is reset for the bank 14 configuration. The rou-
tine then performs a series of tests that will set the processor
status register to reflect the type of character that was read. If
a space character (code 32/$20) is read, the routine loops back
to read another character (which is why spacing is not usually

107

927-938 $039F-$03AA

significant in BASIC program lines). If the character is one of
the numbers 0-9, the carry bit will be clear (carry will be set if
the character is not a digit). If the character was a colon (:),
BASIC'S end-of-statement marker, or a zero byte, BASIC'S
end-of-line marker, the status register Z bit will be set; other-
wise, the Z bit will be clear.

This routine has an alternate entry point at 902/$386,
called CHRGOT, which retrieves and tests the current charac-
ter, the one at the address currently in 61-62/$3D-$3E, with-
out updating the pointer.

Since this routine is in RAM, it can be modified to change
the way BASIC program text is read. Refer to Chapter 5 for
details on how you can use this technique to add new com-
mands to BASIC.

927-938 $039F-$03AA INDSUB_RAMO
Alternate routine for reading characters from program text
This routine retrieves a character from program text (bank 0).
The value in the accumulator upon entry specifies the address
of the zero-page pointer containing the base address, and the
value in the Y register specifies the offset from this base ad-
dress to the character to be read. The character will be in the
accumulator upon return from the routine and the system will
be left in the bank 14 configuration. BASIC ROM includes a
collection of character retrieval subroutines (17102-17159/
$42CE-$4307) that make use of this routine.

939-950 $03AB-$03B6 INDSUB_RAM1
Alternate routine for reading characters from variable storage
This routine retrieves a character from the variable storage
area (bank 1). The value in the accumulator upon entry speci-
fies the address of the zero-page pointer containing the base
address, and the value in the Y register specifies the offset
from this base address to the character to be read. The charac-
ter will be in the accumulator upon return from the routine
and the system will be left in the alternate bank 14 configura-
tion that includes block 1 RAM. BASIC ROM includes a col-
lection of character retrieval subroutines (17102-17159/
$42CE-$4307) that make use of this routine.

108

$03D2-$03D4 978-980

951-959 $03B7-$03BF INDIN1_RAM1
Alternate routine to retrieve a character from variable storage
This routine retrieves a character from the variable storage
area (bank 1) using locations 36-37/$24-$25 as a pointer and
the contents of the Y register as an offset from the address in
the pointer. The character will be in the accumulator upon re-
turn from the routine and the system will be left in the alter-
nate bank 14 configuration that includes block 1 RAM.

960-968 $03C0-$03C8 INDIN2
Alternate routine to retrieve a character from program text
This routine retrieves a character from program text (bank 0)
using locations 38-39/$26-$27 as a pointer and the contents
of the Y register as an offset from the address in the pointer.
The character will be in the accumulator upon return from the
routine and the system will be left in the bank 14
configuration.

969-977 $03C9-$03Dl INDTXT
Alternate routine to retrieve current program text character
This routine retrieves the current program text character using
61-62/$3D-$3E as a pointer. The character will be in the ac-
cumulator upon return from the routine and the system will
be left in the bank 14 configuration. The routine is similar to
the CHRGOT entry into GHRGET, but without the tests for
character type.

978-980 $03D2-$03D4 ZERO
Null descriptor
If the routine [$7AAF] which searches for a variable name in
the variable table fails to find the name when called by EVAL
[$7978] or POINTER [$82FA], the address of this area is re-
turned as the variable descriptor address. This prevents vari-
able table entries from being created if a variable name is first
used in an expression argument or in the POINTER function.
For example, if you use B$ = A$ or AD = POINTER(A$) when
no variable A$ exists, no entry for A$ will be created. These
three locations are all filled with the value 0/$00, copied here
from ROM along with the preceding subroutines.

109

981 S03D5

981 $03D5 CURRENT-BANK
Bank number for BASIC operations
The value in this location specifies the bank number used dur-
ing BASIC routines which directly access memory. The value
here doesn't affect the current system configuration—only the
configuration that will be established for certain operations.
The value here specifies the bank to which data will stored
when the POKE statement is used, or from which data will be
read when the PEEK statement is used. The value here deter-
mines the bank configuration in which the target address for a
SYS statement will be seen. It also determines the bank for the
address used in the WAIT statement. The value here deter-
mines the default bank for the BOOT, BLOAD, and BSAVE
statements. It also determines the system bank affected by the
STASH, FETCH, and SWAP statements.

The value here is initialized to 15/$0F during the BASIC
cold-start sequence, so bank 15 is the default. The BANK
statement can be used to change the value here.

982-985 $03D6-$03D9 TMPDES
Pointers for INSTR evaluation
These locations are used as working pointers for the INSTR
statement routine [$99C1]. Locations 982-983/$03D6-$03D7
hold the address of the first string parameter and locations
984-985/$03D8-$03D9 hold the address of the second string.

$03DA FIN_BANK986
String block flag
This location is used during the routine [$8D22] to convert
character strings into floating-point values to indicate whether
the string being converted resides in BASIC program text
(block 0 RAM) or in the string pool {block 1 RAM).

987-990 $03DB-$03DE SAVSIZ
Temporary storage for SHAPE data
These locations are used during the SSHAPE routine [$642B]
to hold coordinates of the area being saved, and during the
SPRSAV routine [$76EC] to hold the descriptor of the first pa-
rameter value.

110

S 0 3 E 2 994

991 $03DF BITS
Floating-point overflow byte
This location is used for working storage while aligning float-
ing-point values for mathematical operations, or for converting
floating-point values into integers. The value here is initialized
to O/$0O during the BASIC cold-start sequence, and will be re-
set to that value during CLR or warm start.

992-993 $03E0-$03El SPRTMP
Temporary pointer storage
These locations are used during the SPRSAV routine [$76EC]
to temporarily preserve the current value in the CHRGET
pointer (61-62/$3D-$3E).

9 9 4 $O3E2 FG_BG
Standard bitmap color fill value
This location holds the color memory fill pattern for standard
bitmapped mode. When the SCNCLR routine [$6A79] is used
to clear the standard bitmapped (GRAPHIC 1 or GRAPHIC 2)
display, all locations in the video matrix area will be filled
with the value here. (The SCNCLR routine is also used when
the clear parameter is specified in a GRAPHIC statement.) In
standard bitmapped mode, the video matrix area holds fore-
ground and background color information, so the value here
determines the default foreground and background colors for
all screen positions after the screen is cleared.

Whenever the BASIC graphics routines are used to draw
anything on the standard bitmapped display, the value in this
location will determine the color of the line drawn. If color
source 0 was specified for the line, the value in the lower four
bits here will be stored in the lower four bits of the video ma-
trix locations corresponding to the line's location in the bit-
map. If color source 1 is specified, the value in the upper four
bits here will be stored in the upper four bits of the video matrix
locations corresponding to the line's location in the bitmap.

The value in this location is updated whenever the
COLOR statement [$69E2] is executed. The high four bits here
are set to the value in the lower four bits of the foreground
color in location 134/$86. The lower four bits here are set to
the value in the lower four bits of the VIC background color
register at 53281/$D021. These locations are initialized during

111

995 S03E3

the BASIC cold-start sequence to the default foreground and
background colors, so this location will initially hold 219/$DB,
for a light green foreground and dark gray background. The
value here is not affected by RUN/STOP-RESTORE.

995 $03E3 FG-JMC1
Multicolor bitmap color fill value
This location holds the color memory fill pattern for multicolor
bitmapped mode. When the SCNCLR routine [$6A79] is used
to clear the multicolor bitmapped (GRAPHIC 3 or GRAPHIC
4) display, all locations in the video matrix area will be filled
with the value here. (The SCNCLR routine is also used when
the clear parameter is specified in a GRAPHIC statement.) In
multicolor bitmapped mode, the video matrix area holds color
information for pixels with %01 and %10 bit patterns, so the
value here determines the default colors for those pixel pat-
terns in all screen positions after the screen is cleared.

For the BASIC graphics routines that draw on the multi-
color bitmapped display, the value in this location will deter-
mine the color of any lines drawn using color sources 1 or 2.
If color source 1 was specified for the line, the value in the
upper four bits here will be stored in the upper four bits of the
video matrix locations corresponding to the line's location in
the bitmap. If color source 2 was specified, the value in the
lower four bits here will be stored in the lower four bits of the
video matrix locations corresponding to the line's location in
the bitmap.

The value in these locations can be changed with the
COLOR statement [$69E2]. The high four bits here are set to
the value in the lower four bits of the foreground color in lo-
cation 134/$86. The lower four bits here are set to the multi-
color 1 value in the lower four bits of location 132/$84. The
location is initialized during the BASIC cold-start sequence to
the default multicolor pixel colors for %01 and %10 patterns,
so this location will initially hold 2O9/$D1, for light green
%01 pixels and white %1O pixels. The value here is not af-
fected by RUN/STOP-RESTORE.

996-1007 $03E4-$03EF Unused
The locations in this range are not used by any system ROM
routine, and are thus available for your own programming.

112

$03FD-$03FF 1021-1023

1008-1020 $03F0-$03FC DMA
DMA_CALL execution routine
This area holds the RAM-resident portion of the Kernal
DMA_CALL routine [$F7A5]. The routine is copied here from
Kernal ROM during the reset sequence. It is designed to initi-
ate a DMA (direct memory access) command to the REC
(RAM expansion controller) chip in an installed memory ex-
pansion module. The routine loads the current memory con-
figuration register contents, then stores the contents of the Y
register in the REC command register address (57089/$DF01)
and stores the contents of the accumulator in the MMU mem-
ory configuration register (65280/$FF00). If the REC is config-
ured in its default state, storing the value in the MMU register
should trigger the specified REC operation. See Chapter 8 for
more information about the REC chip. Upon completion of the
operation, the original memory configuration register setting
will be restored.

1021-1023 $03FD-$03FF Unused
The locations in this range are not used by any system ROM
routine, and are thus available for your own programming.

113

Bank 0 Working
Storage

VIC Default Screen Memory
1024-2047/$0400-$07FF
This IK area is the default location for the VIC chip's screen
memory in character (GRAPHIC 0) mode. It's not used by
the system for any other purpose. Screen memory can be relo-
cated to any other IK block in RAM by changing the appro-
priate bits in the registers at 53272/$D018 and 56576/$DD00.
For example, screen memory for the system bitmapped modes
(GRAPHIC 1 or GRAPHIC 3) is located at 7168-7423/
$1COO-$1CFR However, the screen editor CINT routine
[$C07B] and Kernal IOINIT routine [$E109], both included in
the reset and RUN/STOP-RESTORE sequences, will reset the
registers to have screen memory at this default area. Conve-
niently, this is the same area used for default screen memory
in the Commodore 64.

When used for screen memory, the first 1000 locations of
this area (1024-2023/$0400-$07E7) correspond to the 1000
character positions of the VIC chip's 40-column X 25-row
screen display. The value in each screen memory location de-
termines what will be displayed in the corresponding position
on the screen. The screen memory values, called screen codes,
are used as indexes into character pattern memory. Any char-
acter pattern can be displayed at any screen location by stor-
ing the appropriate screen code in the appropriate screen
memory location. Appendix C lists the standard character pat-
tern for each screen code. Clearing the screen fills these 1000
memory locations with 32/$20, the screen code for the space
character.

While this area is used as screen memory, the highest
eight locations (addresses 2040-2047/$07F8-$07FF) are used
to hold definition pointers for the eight sprites supported by
the VIC chip. The pattern definition for a sprite requires 64
bytes, so there is room within a 16K VIC video bank for 16384
/ 64, or 256 sprite definitions. These pointer locations each

117

1024-2047 $0400-$07FF

hold a value between 0-255/$00-$FF indicating which 64-
byte area within the current video bank will be used to hold
the pattern definition for the corresponding sprites. Changing
the shape of a sprite is as simple as changing the correspond-
ing sprite pointer to select a new pattern definition. To find
the address specified by the pointer value, multiply the value
by 64/$40 and add the base address for the video bank. The
default pointer values, established by the BASIC cold start ini-
tialization subroutine [$4045], are as follows:

Location Sprite Default pointer value
2040/S07F8 0 56/$38
2041/$07F9 1 57/$39
2042/$07FA 2 58/$3A
2043/$07FB 3 59/$3B
2044/S07FC 4 60/$3C
2045/S07FD 5 61/$3D
2046/$07FE 6 62/$3E
2047/$07FF 7 63/$3F

The default values point to the eight sprite definition
areas at 3584-4095/$0E00-$OFFF. While BASIC initializes
each pointer to a different definition area, this is not manda-
tory. For example, if you want all eight sprites to have the
same shape you can just design one sprite pattern and store
the pointer to that pattern in all eight locations. BASIC doesn't
have any statement specifically for changing pointers, so you'll
have to use POKE to change the values here. Because the de-
fault definition area only has room for eight sprites, you'll
have to use some other area of free memory if you want to
use more than eight sprite shapes. All sprite pattern defini-
tions must lie within the current 16K video bank. For the de-
fault video bank (0-16383/$0000-$3FFF in block 0 RAM), the
free space at 4864-7167/$1300-$lBFF can be used.

Remember that the sprite pointers are dependent on the
current screen memory block, and aren't an absolute feature of
these locations. The sprite pointers always appear at an offset
of 1016-1023/$03F8-$03FF bytes beyond the specified starting
address of screen memory. For example, when one of the bit-
mapped modes is selected, screen memory (in that case used for
color information and usually referred to as the video matrix)
moves to 7168-8191/$1COO-$1FFF, so the sprite pointers for
the default bitmapped screen are instead located at 8184-8191/
$1FF8-$1FFR Thus, in split-screen displays (GRAPHIC 2 or

118

$0800-$09FF 2048-25S9

GRAPHIC 4) it is possible for the same sprite to have different
shapes in the text and bitmapped portions of the display. The
SCNCLR routine (also called when you add an extra ,1 to the
GRAPHIC statement) copies the text screen sprite pointer val-
ues from locations 2040-2047/$07F8-$07FF to the bitmapped
screen sprite pointers at 8184-8191/$1FF8-$1FFF, but there's
no ROM routine to perform a copy in the opposite direction—
from bitmapped screen sprite pointers to text screen sprite
pointers—so your text screen pointers should be preserved
even if you change the pointers for sprites displayed on the
bitmapped screen.

The remaining 16 locations in this area, addresses
2024-2039/$07E8-$07F7, are unused by any system routine.
They are not affected by clearing the screen or changing sprite
pointers, or by reset or RUN/STOP-RE STORE. Thus, they are
available for your own programming uses.

BASIC Runtime Stack
2048-2559/$0800-$09FF
This 512-byte area is used by BASIC for its runtime stack.
When you use the machine language JSR instruction to call a
subroutine, there must be some way to record the address to
return to upon completion of the subroutine. As explained in
the entry for locations 256-511/$D1OO-$O1FF, the return ad-
dress is placed in a special area of memory called the proces-
sor stack. BASIC'S GOSUB statement and looping statements
like FOR and DO also need some place to store the address to
return to upon completion of the subroutine or loop. In earlier
versions of Commodore BASIC, this information was also kept
in the processor stack. However, only 256 bytes of storage
space are available in the processor stack, and BASIC allows
only a portion of that to be used while it is in control. This
limits the level to which loops and subroutines can be nested.
For example, each FOR-NEXT loop requires 18 bytes of stack
space, so the Commodore 64's BASIC 2.0 allows loops to be
nested only nine levels deep. Because the more complex mem-
ory banking routines in the 128 require more machine lan-
guage subroutine calls, the 128's BASIC 7.0 would allow even
fewer levels of nesting if it used this same system. However,
BASIC 7.0 instead stores the information for GOSUB, FOR,
and DO in this totally separate runtime stack area.

119

2560-2687 $0A00-$0A7F

Because this storage area does not have to be shared with
processor return addresses, as is the case with the processor
stack, the entire 512-byte space is available. Thus, you can
have up to 28 nested FOR-NEXT loops (each requires an 18-
byte entry on the stack), or up to 102 nested DO loops or
GOSUB subroutines (each of which requires a 5-byte entry), or
any combination thereof.

Using this runtime stack requires slightly more software
overhead than using the processor stack. The 8502 processor
has an internal stack pointer register that indicates the position
of the next available position in the processor stack, and it also
has PHA and PLA instructions specifically for adding and re-
moving instructions from this stack. None of this is handled
automatically for the BASIC runtime stack; instead, the routines
which use the stack must explicitly update locations 125-126/
$7D-$7E, the runtime stack pointer. The GOSUB [$59CF],
FOR [$5DF9], and DO [$5FE0] statement routines add entries
to the stack, and the RETURN [$5262], NEXT [$57F4], and
LOOP [$608A] statement routines can remove entries from the
stack. The COLLISION statement [$7164] also causes the
equivalent of a GOSUB entry to be placed on the stack when
a collision of the specified type occurs.

This area is not used by the system for any purpose other
than the BASIC stack, so this entire area is available for use by
machine language programs that don't require BASIC.

Kernal and Screen Editor Working
Storage
2560-2687/$0A00-$0A7F
2560-2561 $OA00-$0AOl SYSTEM-VECTOR
BASIC restart vector
This pair of locations contains the address of the routine that
will be used to restart BASIC. The RAMTAS routine [$E093],
part of the reset sequence, puts the value 163 84/$4 000 here—
the address of the BASIC cold start routine. Unless the Com-
modore or RUN/STOP keys are held down, the RESET rou-
tine [$EO0O] ends with a JMP ($0A00) to cold start BASIC.
One of the final steps in the BASIC cold start routine is to

120

$OA03 2563

change the value here to 16387/$4003—the address of the
BASIC warm start routine.

The RUN/STOP-RESTORE sequence in the NMI han-
dling routine [$FA40] ends with a JMP ($0A00). Because of the
cold start's routine initialization, this will normally cause a
warm start of BASIC. However, you can make RUN/STOP-
RESTORE cause a jump to another routine by changing the
value in these locations to point to the address of the new
routine. The only restriction is that the target routine must be
visible in the bank 15 configuration, since that is how memory
is arranged when the JMP is executed.

The monitor X command routine [$B0E3] also performs a
JMP ($0A00), so the value in these locations determines the
address of the routine which will be executed when you use
that command to exit the built-in machine language monitor.

2562 $ 0 A 0 2 DEJAVU
Memory initialization status flag
This location is used to indicate whether the RAMTAS routine
has been performed. If the RESET routine [$E000] detects that
the RUN/STOP key is being held down, indicating that the
reset sequence should end by entering the monitor rather than
BASIC, then the value here will be tested. If this location con-
tains the value 165/$A5, the RAMTAS routine will be omitted
from this reset sequence. The routine will hold a random
value when the computer is first turned on, but the first call of
the RAMTAS routine [$E093] will initialize this location to
165/$A5. Thus, once RAMTAS has been performed at least
once, the test of this flag location can be used to prevent its
being performed again when entering the monitor after a re-
set. This allows you to preserve the contents of zero page,
normally cleared by RAMTAS during the reset.

$0A03 PALNTS2563
PAL/NTSC flag
The IOINIT routine [SE109], part of the RESET sequence,
checks the number of scan lines produced by the VIC chip to
determine whether the 128 is using a NTSC (North American)
or PAL (European/British) video system. This location is set to
reflect the result of that test: to 0/$00 for NTSC systems or
255/$FF for PAL systems. Later routines that initialize the

121

2564 S0AO4

video chips and timers can then adjust the default settings ac-
cordingly. This eliminates the need for different versions of
the Kernal ROM for different countries.

2564 $0A04 INIT_STATUS
System initialization status flag
This location is initialized to 0/$00 near the beginning of the
Kernal RESET routine [$EOOOj. Bits are then set to %1 by later
routines to indicate that certain initialization steps have been
performed.
Bit 0: This bit is set to %1 during the BASIC cold start routine
[$4023] to indicate that the cold start has been performed. The
IRQ handling routine [$FA65] checks this bit and calls the
BASIC IRQ routine [$A84D] only if the bit is % 1 . The BASIC
IRQ routine, which handles sprite movement sprite collision
detection, and sound generation, copies the contents of a num-
ber of shadow locations into VIC and SID hardware registers.
One way to turn off this interrupt routine and gain direct ac-
cess to the hardware registers is to set this bit to %0.

Bits 1-5: Unused.
Bit 6: This bit is tested during the screen editor initialization
(CINT) routine [$C07B] to determine whether the keyboard ta-
ble pointers and function key definitions need to be initialized.
If the bit is %0, the default pointer values and key definitions
will be copied from ROM into the proper areas of RAM; then
this bit will be set to % 1 . While this bit is % 1 , the pointer and
function key initialization portion of the routine will be skipped.
CINT is part of both the reset and RUN/STOP-RESTORE se-
quences, but the pointers and key definitions are normally ini-
tialized only during the reset sequence, which resets this bit to
%0 before calling CINT. Custom keyboard table pointers and
function key definitions are usually preserved during RUN/
STOP-RESTORE, which does not affect this bit.
Bit 7: This bit is tested during the IOINIT routine [$E109] to
determine whether the 80-column (VDC) character set needs
to be initialized. If the bit is %0, the INIT80 routine [$CE0C]
will be called to copy the standard character patterns from
ROM into the VDC chip's private RAM; then this bit will be
set to % 1 . While this bit is % 1 , the character initialization por-
tion of the routine will be skipped. IOINT is part of both the
reset and RUN/STOP-RESTORE sequences, but the character

122

S 0 A 0 9 - S 0 A 0 A 2569-2570

patterns are normally initialized only during the reset se-
quence, which resets this bit to %0 before calling IOINT. Cus-
tom 80-column characters are usually preserved during RUN/
STOP-RESTORE, which does not affect this bit.

2565-2566 SO A05-S0A06 MEMSTR
Kernal MEMBOT pointer
This pair of locations holds the default value of the lowest
memory address available in block 0 RAM. The value here can
be read or changed using the Kernal MEMBOT routine
[$F772], which has a Kernal jump table entry at 65436/$FF9C.
The RAMTAS routine, part of the RESET sequence, calls
MEMBOT to initialize these locations to 7168/$1COO. How-
ever, the value here is not used by any other system routine,
so changing this value will not affect system operation in any
way. This is a change from the Commodore 64, where the
value in the MEMSTR pointer is used to establish the lowest
address available of BASIC. In the 128, the start-of-BASIC
pointer is always initialized to 7169/$1CO1, regardless of the
value here.

2567-2568 $0AO7-$0A08 MEMSIZ
Kernal MEMTOP pointer
This pair of locations holds the default value of the highest
memory address available in block 0 RAM. The value here can
be read or changed using the Kernal MEMTOP routine
[$F763], which has a Kernal jump table entry at 65433/$FF99.
The RAMTAS routine, part of the RESET sequence, calls
MEMTOP to initialize these locations to 65280/$FF00. How-
ever, the value here is not used by any other system routine,
so changing this value will not affect the system operation in
any way. This is a change from the Commodore 64, where the
value in the MEMSIZ pointer is used to establish the highest
address available for BASIC variable storage. In the 128, the
top-of-BASlC pointers are always initialized to 65280/$FF0O/

regardless of the value here.

2569-2570 $OA09-$OAOA IRQTMP
Temporary storage for IIRQ vector during tape operations
These locations are used for temporary storage of the address
value in the IIRQ vector at 788-789/$0314-$0315 during tape
operations. The tape routines stash the current IIRQ address

123

2571 SOAOB

here, then substitute the address of the IRQ service routine to
handle the tape operation. Upon completion of the operation,
the original address stored here will be restored to the IIRQ
vector.

Location 2570/$0A0A is also used as a flag to indicate
whether or not a tape IRQ routine is active. That location is
initialized to 0/$00 by the IOINIT routine, part of the RESET
sequence, and will also be reset to that value upon completion
of the tape operation. Thus, a nonzero value in the flag loca-
tion indicates that a tape interrupt routine is active.

2571 $0AOB CASTON
CIA #1 control register A log
This location is used to record the status of CIA #1 control
register A (56334/$DC0E) during tape operations.

2572 $0A0C
CIA #1 interrupt control register log
This location is used to record the status of the CIA #1 inter-
rupt control register (56333/$DC0D) during tape operations.

2573 $0A0D
CIA #1 timer A status log
The CIA #1 control register A log value from 25 71 /$0AOB is
stored here during certain tape operations to preserve the
timer A status.

$0A0E TIMOUT2574
IEEE timeout flag
When the VIC-20 was introduced, its Kemal included a jump
table entry (SETTMO, at 65442/$FFA2) to support a proposed
IEEE bus interface. The IEEE bus is the parallel data bus used
by Commodore's original PET/CBM models for communica-
tions with peripheral devices. The interface was never intro-
duced, but the Kernals of all subsequent Commodore models
have slavishly included the SETTMO jump table entry. In the
128, the SETTMO routine [$F75F] does nothing more than
store the accumulator contents in this location. This location is

124

$0A10 2576

not used by any other 128 routine, and is provided strictly to
maintain Kernal jump table compatibility with previous Com-
modore models.

2575 $0A0F ENABL
RS-232 activity flag
This location is used during the RS-232 routines to record the
value in the CIA #2 interrupt control register (56589/$DD0D).
CIA #2 interrupt requests generate the NMI interrupts that
drive RS-232 transmission and reception. While the CIA #2
interrupts for RS-232 are disabled, this location will be set to
0/$00. When bits are set in the CIA #2 interrupt control regis-
ter to enable RS-232 operations, the corresponding bits are
also set in this location. If any of the following bits is set to
% 1 , the corresponding interrupt is enabled:
Bit Interrupt source RS-232 activity
0 Timer A bits being transmitted
1 Timer B bits being received
4 FLAG line waiting for start bit to be received
This location is initialized to 0/$00 during the IOINIT routine
[$E109], part of the reset and RUN/STOP-RE STORE
sequences.

2576 $0A10 M51CTR
RS-232 control register
This location controls some of the operating characteristics of
the RS-232 interface. When a file is opened to device 2, the
first character of the filename is copied here. Although RS-232
communications in the 128 are managed by software, the bits
of this location are defined to simulate the control register of a
6551 UART chip, a hardware device for controlling serial com-
munications. The bits are used as follows:
Bits 0-3: These bits determine the baud rate for both transmis-
sion and reception—the rate (in bits per second) at which bits
will be sent or received. Valid settings are as follows:

125

2577 $OA11

3
0
0
0
0
0
0
0
0
1
1
1

Bits
2
0
0
0
0
1
1
1
1
0
0
0

1
0
0
1
1
0
0
1
1
0
0
1

0
0
1
0
1
0
1
0
1
0
1
0

Bit
Value
0/$0
1/*1
2/$2
3/$3
4/$4
5/$5
6/$6
7/%7
8/$8
9/$9

10/$A

Baud rate

user defined
50
75
110
134.
150
300
600

1200
1800
2400

baud
baud
baud

5 baud
baud
baud
baud
baud
baud
baud

When the user-defined rate is selected, the baud rate is deter-
mined by the value in locations 2578-2579/$0A12-$0A13.
The remaining possible bit patterns, %1011-%lll l / result in
invalid baud rates.
Bit 4: Unused.
Bits 5-6: These bits determine the number of data bits in each
character sent or received (sometimes referred to as the word
size). The total character length will also include a start bit,
possibly a parity bit, and one or more stop bits.
Bits Bit Number of
6 5 value data bits
0 0 0/$00 8 data bits
0 1 32/$20 7 data bits
1 0 64/$40 6 data bits
1 1 96/S60 5 data bits
Bit 7: This bit determines the number of stop bits in each
character. Stop bits are %1 bits added to the end of the char-
acter. They represent the minimum amount of time the com-
munications line will remain at the low (%1 bit) level before
the next start bit can be sent or received.

Bit 7 Bit value
0 0/$00
1 128/S80

Number of stop bits
1 stop bit
2 stop bits

M51CDR2577 $OA11
RS-232 command register
This location controls some of the operating characteristics of
the RS-232 interface. When a file is opened to device 2, the

126

$OA11 2 5 7 7

second character of the filename, if any, is copied here. Al-
though RS-232 communications in the 128 are managed by
software, the bits of this location are defined to simulate the
command register of a 6551 UART chip, a hardware device for
controlling serial communications. The bits are used as follows:
Bit 0: This bit controls the handshaking mode for RS-232
transmission and reception. The RS-232 interface consists of
three primary signal lines—transmitted data, received data,
and ground—plus a number of supplementary control lines—
data set ready (DSR), data terminal ready (DTR), ready to send
(RTS), and clear to send (CTS). The control lines are called
handshaking lines because they allow the sending and receiv-
ing units to exchange signals (handshakes) indicating whether
data is being successfully transmitted and received. The 128's
RS-232 software interface can operate in two different modes:
3-line, where none of the handshaking lines are used, and x-
line, where all of the handshaking lines are used. These bits
control the interface mode as follows:

Bit 0 Interface mode
0 3-line interface {no handshaking)
1 x-line interface {full handshaking)

For 3-line mode, the output handshaking lines (DTR and RTS)
will be held at a constant high (+ 5 volts) level. The input
handshaking lines {DSR and CTS) will be ignored.
Bits 1-3: Unused.
Bit 4: For unknown reasons, Commodore literature continues
to indicate that this bit controls the duplex mode of the RS-
232 interface. The bit is supposed to select full duplex when
set to %0 or half duplex when set to % 1 . However, this bit is
not checked by any RS-232 routine, and its setting has no ef-
fect on the operation of the interface.

Duplex is often confused with local echo. A full-duplex
interface can simultaneously send and receive data, while a
half-duplex interface can send data and receive data, but not
both at the same time. The 128's RS-232 interface always op-
erates in full-duplex mode. In casual usage, however, duplex is
often used to describe whether or not the system echoes back
the characters it receives. In remote echo mode {incorrectly re-
ferred to as full duplex), the system displays only characters
received from the remote unit (the one being called). The as-
sumption is that the remote unit will send back an "echo" of

127

2577 $OA11

each character it receives from the system. In local echo mode
(incorrectly called half duplex), the system displays the charac-
ters it sends as well as the ones it receives. The assumption in
this case is that the remote unit will not echo the characters it
receives.

Bits 5-7: This bit controls the parity generated for transmitted
characters and the parity tested for in received characters. Par-
ity is a simple method of detecting some errors in data trans-
mission. A parity bit can be added between the data and stop
bits in the character. The value of the parity bit is selected to
make the total number of %1 bits in the character (not count-
ing stop bits) either even or odd. The receiving unit can then
count the number of %1 bits in the received character to de-
termine if bits have been garbled in transmission. Parity
checking did not work properly in the original versions of the
Commodore 64 Kernal ROM, but that problem has been cor-
rected in the 128's Kernal (and in the version of 64 Kernal
ROM for the 128's 64 mode). Possible parity selections are as
follows:

Bits Parity selection
7 6 5
x x 0 parity not used
0 0 1 odd parity
O i l even parity
10 1 mark parity
1 1 1 space parity

If bit 5 is %0, no parity bit will be generated in transmit-
ted characters and the system will expect incoming characters
to have no parity bit. This selection is common when a word
size of eight data bits per character is used. Odd parity means
that a parity bit will be generated for each transmitted charac-
ter such that the character will have an odd total number of
%1 bits (not counting the stop bits). When even parity is se-
lected, the parity bit will be set to make the total number of
%1 bits in the character even. For either even or odd parity,
the number of %1 bits in each character received will be
counted and compared against the parity selection. If the num-
ber does not match the specified parity type, the error will be
indicated by setting bit 0 of the status register location (2580/
$0A14) to % 1 . Mark and space parity are alternate forms of no
parity. When mark parity is selected, the parity bit for each
transmitted character will always be set to %1 , and the parity

128

S 0 A 1 4 2580

bit for each received character will be ignored. When space
parity is selected, the transmitted parity bit will always be %0
and the received parity bit will be ignored.

2578-2579 $0A12-$0A13 M51AJB
RS-232 baud-rate factor
The value in these locations determines the baud-rate timing
factor. When a file is opened to device 2, the third and fourth
characters of the filename are copied here (if the filename has
that many characters). However, the filename characters are
meaningful only if a user-defined baud rate has been speci-
fied—if bits 0-3 of the first character of the filename (copied
into 2576/$0A10) are %0000. In that case, the value in these
locations specifies the baud rate according to the following
formula:
baud rate = clock frequency/(2 * (rate factor + 100))

For the standard baud-rate settings, the Kernal RS-232 OPEN
routine copies the proper rate factor into these locations from
tables in Kernal ROM (59472-59491/$E850-$E863 for NTSC
systems or 59492-59511/$E864-$E877 for PAL systems). The
two separate tables are required because the different video
systems use different clock frequencies.

There's rarely a need to specify a custom baud rate, since
the standard settings encompass all standard rates that the 128
can support. (The 128 cannot handle RS-232 communications
faster than 2400 baud, so don't try to specify a faster rate.)
However, should you ever want to do so, the formula for the
rate factor is as follows:
rate factor = {(clock frequency / desired baud rate)/ 2) — 100

The clock-frequency value is 1022730 for NTSC (North Amer-
ican) systems or 985250 for PAL (European) systems. The low
byte of the resulting factor should be stored in 2578/$0A12
and the high byte in 2579/$0A13.

2580 $0A14 RSSTAT
RS-232 status register
Although RS-232 communications in the 128 are managed by
software, the bits of this location are defined to simulate the
status register of a 6551 UART chip, a hardware device for
controlling serial communications.

129

2580 S 0 A 1 4

It is possible to read the value here directly, but this loca-
tion can also be read using the Kernal READSS routine
[$F744] if the current device number in location 186/$BA is 2
(for RS-232). The READSS routine also has a Kernal jump ta-
ble entry at 65463/$FFB7. From BASIC, the reserved variable
ST will reflect the value in this location as long as the current
device number is 2. This location is initialized to 0/$00 each
time the Kernal OPEN routine is called to open a file to device
2, the RS-232 interface. The value here is also reset to zero
after each call to the READSS routine when device 2 is active,
including each reference to the ST variable in a BASIC program.

Bit 0: This bit is the parity-error indicator. It is used only
when either even or odd parity is selected, and is relevant
only to received characters. The bit is set to %1 whenever a
character is received for which the calculated total of %1 bits
received for the character does not match the specified parity
selection.

Bit 1: This bit is the framing-error indicator. The bit is set to
%1 when a framing error occurs—when no stop bits are found
following the specified number of data and parity bits.

Bit 2: This bit is the receiver buffer-overflow indicator. It will
be set to %1 when a character is received after the RS-232 in-
put buffer at 3072/$0C00 is already full.

Bit 3: This bit is the receiver buffer-empty indicator. It will be
set to %1 whenever there are no characters waiting to be read
from the input buffer. This bit should be tested before each at-
tempt to read characters from the RS-232 interface.

Bit 4: This bit is the CTS-missing error indicator. It is used
only when x-line handshaking is selected. The bit will be set
to %1 if the CTS (clear to send) input line drops to a low (0
volts) state while data is being transmitted. When x-line
handshaking is used, the external device connected to the in-
terface is expected to hold the CTS line at a high (+ 5 volts)
state. If the line goes low, it is taken as an indication that the
external device is not ready to receive data, so transmission is
suspended until CTS goes high.

Bit 5: Unused. This bit should always be %0 when read.

Bit 6: This bit is the DSR-missing error indicator. It is used
only when x-line handshaking is selected. The bit will be set
to %1 if the DSR (data set ready) signal input line drops to a

130

$0A16-$0A17 2582-2583

low (0 volts) state during either transmission or reception of
characters. When x-line handshaking is used, the external de-
vice connected to the interface is expected to hold the DSR
line high (+ 5 volts). If the line goes low, it is taken as an indi-
cation that nothing is connected to the interface.

Bit 7: This bit is the break indicator. A break occurs when,
during reception of characters, a byte is received consisting of
all %0 bits not followed by stop bits (which are always %1).
In other words, a break occurs if the received data signal line
is held at the %0 bit (+ 5 volt) level for longer than the time
required to receive a character.

S0A15 BITNUM2581
RS-232 bit count
This location will hold the number of bits prior to the parity
and stop bits for each character received or transmitted. The
location is initialized during the RS-232 OPEN routine [$F040]
to the number of data bits (specified in bits 5-6 of 2576/
$0A10) plus 1. For transmission, the value here is copied into
location 180/$B4, the countdown of bits to send. For recep-
tion, the value here is copied into location 168/$A8, the
countdown of bits remaining to be received.

2582-2583 $0A16-$0A17 BAUDOF
RS-232 baud-rate timing constant
Commodore's insistence on providing an exact software emu-
lation of the 6551 UART chip leads to some odd software gy-
rations. The baud-rate timing factor specified in locations
2578-2579/$0A12-$0A13 must be converted back into an ab-
solute timing value. The Kernal OPEN routine for RS-232 per-
forms the following calculation:
timing constant = (rate factor * 2) — 200
Given the formula for rate factor, this is equivalent to:
timing constant = clock frequency / baud rate

This yields the number of system clock cycles required to send
or receive each bit at the specified baud rate. The resulting
value is stored in these locations. When transmission or recep-
tion is initiated, the value here is copied into one of the CIA
#2 timers. This determines the time between the NMI inter-
rupts that drive the transmission or reception of bits.

131

2584 $0A18

2584 S0A18 RIDBE
Index to first character in RS-232 input buffer
This location holds the offset from the start of the RS-232 in-
put buffer to the position where the next character received
will be stored. The input buffer normally begins at location
3072/$0C00. The value here is incremented before each re-
ceived character is added to the buffer, unless incrementing
would make the value here equal to the value in location
2585/$0A19. In that case, a buffer overflow has occurred
{more characters have been received than the buffer can hold),
so bit 2 of the status location (2580/S0A14) is set to % 1 .

2585 $0A19 RIDBS
Index to last character in RS-232 input buffer
This location holds the offset from the start of the RS-232 in-
put buffer to the position of the next character waiting to be
removed from the buffer. The buffer normally begins at 3072/
$0C00. The value here is incremented after each character is
retrieved from the buffer. When the value here equals the
value in location 2584/$0A18, all characters have been re-
moved and the buffer is empty. In this case, bit 3 of the status
location (2580/$0A14) will be set to % 1 .

2586 S0A1A RODBS
Index to first character in RS-232 output buffer
This location holds the offset from the start of the RS-232 out-
put buffer to the position of the next character awaiting trans-
mission. The output buffer normally begins at 3328/$0D00.
The value here is incremented after each character is removed
from the buffer for transmission. When the value here equals
the value in location 2587/$0AlB, all characters awaiting
transmission have been sent and the buffer is empty.

2587 $OA1B RODBE
Index to last character in RS-232 output buffer
This location holds the offset from the start of the RS-232 out-
put buffer to the position where the next character will be
added to await transmission. The output buffer normally be-
gins at 3328/S0D00. The value here is incremented before
each character is added to the buffer, unless the incrementing
would make the value here equal the value in 2586/$0AlA.

132

S0A1D-60A1F 2589-2591

In that case, the buffer is already full, and some characters
must be transmitted before any more can be added to the buffer.

2588 $OA1C SERIAL
Fast serial mode flag
This location is used to indicate whether the currently speci-
fied serial bus device, such as the 1571 disk drive, is capable
of fast serial communications. The location is initialized to
0/$00, the value for standard (slow) communications, during
the IOINIT routine [$E109]. The routines that handle the serial
bus TALK and LISTEN commands attempt a fast serial hand-
shake. If the external device responds properly, bits 6 and 7 of
this location will be set to % 1 . Bit 7 indicates that the external
device is capable of fast transmission and reception of individ-
ual bytes. The bit is reset to %0 during the Kernal routines
that handle the serial bus UNTALK and UNLISTEN routines.
Bit 6 indicates that the system is capable of high-speed burst
mode loading.

2589-2591 $OA1D-$OA1F TIMER
Software jiffy timer
The three-byte value in these locations is decremented 60
times per second by the Kernal UDTIM routine [$F5F8], part
of the IRQ sequence. Thus, these locations function in a man-
ner opposite that of the jiffy clock at 160-l62/$A0-$A2,
which is incremented 60 times per second by UDTIM. The or-
der of bytes here is the opposite of the order of bytes in the
jiffy clock: $OA1D is the low byte and $OA1F is the high byte.

Since the countdown for this timer is handled automati-
cally during the IRQ, it is useful for many timing applications.
The way to use this timer is to load the locations with the
value in jiffies (1/60-second intervals) for the desired delay
period, then test for a value of $FF in location 2591/$OA1F.
That location will contain $FF after the three-byte value rolls
over from $000000 to $FFFFFF at the end of the countdown.
The highest allowable initial value when using this scheme is
$FF0000, which corresponds to 16,711,680 jiffies—a little over
three days.

There is one caution in using this location from BASIC.
The SLEEP statement routine [$6BD7] uses this timer for its
delay countdown, so any use of the SLEEP statement will
overwrite any values you may have stored in these locations.

133

2592 $0A20

2592 $0A20 XMAX
Maximum number of keys in the keyboard buffer
The value in these locations determines the maximum number
of characters that can be held in the keyboard buffer pending
processing. The value is initialized to 10/$OA—the full length
of the standard keyboard buffer at 842-851/$034A-$0353—
by the CINT screen editor initialization routine [$C07B], part
of the reset sequence. During the SCNKEY routine [$C55D],
the value here is compared against the value in location
208/$D0, the count of characters currently in the buffer, to
determine if there is room in the buffer to record another
keypress.

You can reduce the value here to decrease the number of
unprocessed keypresses that can accumulate in the buffer.
However, you should not increase the value above 10, as this
will cause overflow from the buffer to overwrite the tab stop
table at 852-861/$0354-$035D.

$OA21 PAUSE2593
Scroll pause flag
This location is used to pause printing. During the screen
BSOUT routine [$C72D], the value here is tested. If it is non-
zero, the routine will wait indefinitely for the location to be
reset to zero. The value is initialized to 0/$00 by the CINT
routine [$C07B]. To implement the pause feature, the SCNKEY
routine [$C55D], part of the system IRQ sequence, sets this lo-
cation to 13/$0D when either the NO SCROLL or CONTROL-S
keys are pressed, and resets the location to 0/$00 when the
next key is pressed.

$OA22 RPTFLG2594
Key repeat flag
The value here determines which keys, if any, will repeat if
held down. If bit 7 of this location is %1 (value 128/S80), all
keys repeat. If bit 6 is %1 (value 64/$40), no keys repeat.
Otherwise, only the cursor, space, and INST/DEL keys repeat.
This location is initialized to 128/S80—all keys repeat—by
the screen editor CINT routine [$C07B], This is different from
the Commodore 64, where the default value is 0/$00—only
cursor, space, and INST/DEL repeating.

134

$0A25 2597

2595 $0A23 KOUNT
Countdown between key repeats
This location is used as a counter to establish the delay be-
tween repeats when a key is held down. Once repeating has
begun, indicated by a value of 0/S00 in location 2596/$0A24,
the value here will be decremented on each pass through the
SCNKEY routine [$C55D] as long as the same key is held
down. Each time the count reaches zero, the key is repeated
and this location is reinitialized to 4/$04. This results in a
key-repeat rate of 15 times per second. The starting value of 4
for this countdown is loaded from ROM in the SCNKEY rou-
tine, and thus cannot be changed, so the delay period between
repeats is not programmable.

2596 $0A24 DELAY
Countdown until key repeating begins
This location is used as a counter to establish the delay before
repeating begins when a key is held down. (Location 2594/
$0A22 controls which keys, if any, will repeat if held down.)
If the scan code of the current key is the same as the scan
code detected on the last pass through the SCNKEY routine
[$C55D], the value here will be decremented. When the count
reaches zero, repeating can begin at the rate determined by lo-
cation 2595/$0A23. When the key is released, this location is
reinitialized to 16/$10. This results in a delay before repeating
of about 1/4 second. The starting value of 16 is loaded from
ROM in the SCNKEY routine, and thus cannot be changed, so
the delay before repeating begins is not programmable.

2597 $0A25
Delay between case-switching repeats
This location is used to provide a delay between character case
switches when the SHIFT-Commodore key combination is
held down. This location isn't a countdown. Rather, it is ini-
tialized to 128/$80; then the value is shifted one bit to the
right on each pass through the SCNKEY routine until it be-
comes zero. This provides a delay of about 1/8 second.

135

2598 $0A26

2598 $0A26 BLNON
Cursor blink flag
Bit 6 of this location controls whether the cursor on the 40-
column (VIC) screen will blink. When the bit is %0, the cursor
blinks at a rate determined by location 26O0/S0A28. When the
bit is % 1 , the cursor will be a solid, unblinking block. This lo-
cation is initialized to 0/$00 during the CINT screen editor
initialization routine [$C07B], so the default cursor will be
blinking. The bit can be set to %1 using the ESC E key se-
quence, and cleared to %0 using ESC F.

Bit 7 of this location indicates the blink phase of the
cursor on the 40-column (VIC) screen. When the bit is %0, the
character at the cursor position is in its original state. When
the bit is % 1 , the character is reversed to provide the cursor
blink effect.

2599 $0A27 BLNSW
Cursor enable flag
This location controls whether a cursor will be present on the
40-column (VIC) screen. The cursor will be enabled when the
value here is zero and disabled when this location contains any
nonzero value. This location can be used to enable the cursor
when it is normally turned off. For example, the following
statement provides a cursor at the prompt (GET and GETKEY
don't normally provide a cursor):

300 POKE 2599,0: PRINT"PRESS A KEY: ";: GETKEY K$

2600 $0A28 BLNCT
Cursor blink countdown
This location determines the delay between cursor blinks for
the 40-column (VIC) screen. Bit 6 of location 2598/$0A26
must be %0 to enable cursor blinking. The value here is
decremented on each pass through the screen editor IRQ rou-
tine. Whenever the value reaches zero, the blink phase of the
cursor changes and bit 7 of the screen code at the cursor posi-
tion is toggled. This reverses the character at thai position.
The value here is reinitialized to 20/$ 14 whenever it counts
down to zero. It takes two countdowns to complete a cursor
blink (one while the character is in its normal state and one
while it is reversed), so 40 passes of the screen editor IRQ rou-
tine are required for each cursor blink. As a result, the cursor-

136

$0A2C 2604

blink rate for the VIC screen is about every 2/3 second. The
initialization value is read from ROM, so the 40-column blink
rate is not programmable.

2601 $0A29 GDBLN
Character under cursor
This location is used to hold the original (unblinked) screen
code for the character at the current 40-column screen cursor
position. If the cursor is moved from the current position with-
out printing a new character, this value will be restored to the
position when the cursor is moved.

2602 $0A2A GDCOL
Color under cursor
This location is used to hold the original color of the character
at the current 40-column screen cursor position. If the cursor is
moved from the current position without printing a new char-
acter, this value will be restored to corresponding color mem-
ory location for the position when the cursor is moved.

$0A2B CURMOD2603
VDC cursor mode
This location is a shadow for VDC internal register 10/SOA.
See the entry for that register in Chapter 8 for details. The
value here is copied into the register every time the screen
editor routines are used to print a character to the 80-column
screen.

2604 $0A2C VM1
VIC text screen and character base
This location is a shadow for the VIC chip screen and character
base address register (53272/$D018) for the text (GRAPHIC 0)
screen, or for the text portion of a split display. The value here
is copied into the VIC register during the text screen-setup
portion of the screen editor IRQ routine [$C194]. Refer to the
discussion of the register in Chapter 8 for details. During the
screen editor initialization [$C07B], this location is set to
20/$14. That value places screen memory at 1024/$0400 and
character memory at 4096/$1000. If the SHIFT-Commodore
combination is detected during the SCNKEY routine [$C55D],
bit 1 of this location is toggled. This switches the character set
base address between 4096/S1000 and 6144/$1800.

137

2605 S0A2D

2605 $0A2D VM2
VIC bitmap and video matrix base
This location is a shadow for the VIC chip bitmap and video-
matrix base address register (53272/$D018) for the bitmapped
(GRAPHIC 1 or GRAPHIC 3) screen, or for the bitmapped
portion of a split display. The value here is copied into the
VIC register during the bitmapped screen-setup portion of the
screen editor IRQ routine [$C194]. Refer to the discussion of
the register in Chapter 8 for details. During the screen editor
initialization routine [$C07B], this location is set to 120/$78.
This value places the default video-matrix area at 7168/$1COO
and the bitmap at 8192/$2000.

2606 $0A2E VM3
Starting page for VDC screen memory
The value in this location is used during the screen editor
routines to determine the starting page within VDC RAM for
80-column screen memory. During the screen editor initializa-
tion routine [$C07B], this location is set to 0/$00, which
places screen memory at address 0/$0000 in VDC RAM.

The value here determines where the screen editor thinks
VDC screen memory begins, but not the actual starring ad-
dress of the screen. (This location is not a shadow for a VDC
register.) The actual screen starting address is determined by
the value in VDC internal registers 12-13/$0C-$0D. If you
change the register value, you should also change the value in
this location, and vice versa.

2607 $0A2F VM4
Starting page for VDC attribute memory
The value in this location is used during the screen editor
routines to determine the starting page within VDC RAM for
80-column attribute memory. During the screen editor initial-
ization routine [$C07B], this location is set to 8/$08, which
places attribute memory at address 2048/S0800 in VDC RAM.

The value here determines where the screen editor thinks
VDC attribute memory begins, but not the actual starting ad-
dress of attributes. (This location is not a shadow for a VDC
register.) The actual attribute starting address is determined by
the value in VDC internal registers 20-21/$14-$15. If you
change the register value, you should also change the value in
this location, and vice versa.

138

$0A34 2612

2608 $0A30 LINTMP
Ending row for screen input
This location is used by the routines which accept lines of in-
put from the screen or keyboard to hold the number of the
screen row on which the displayed line of characters ends.
This value is tested to determine when the end of the input
has been reached. For input from the screen, the BASIN rou-
tine [$C29B] fails to set this location, so the row number for
the end of the input line must be set explicitly by storing the
proper value (0-24) in this location.

2609-2610 $0A31-$0A32 SAV80
Temporary storage for 80-column memory manipulation
These locations are used to store the current row and column
number values during the routines that clear or scroll lines on
the 80-column screen. Location 2609/$0A31 holds the row
number and 2610/$0A32 holds the column number.

2 6 1 1 $ 0 A 3 3 CURCOL
Attribute of current cursor position
This location is used to hold the original attribute of the char-
acter at the current 80-column screen cursor position. If the
cursor is moved from the current position without printing a
new character, this value will be restored to corresponding
attribute memory location for the position when the cursor is
moved.

2612 $0A34 SPLIT
Scan line for screen split
This location holds the scan line for the raster interrupt which
will set up the lower (text) portion of a split bitmapped/text
screen. When a split screen is selected (when bit 6 of location
216/SD8 is set to %1), the value here will be copied into the
VIC raster compare register (53266/$D012) during the bit-
mapped screen-setup portion of the screen IRQ routine [$C194].
This will cause a raster interrupt at the specified scan line,
which will execute the text screen-setup portion of the interrupt
routine to establish the text portion of the split screen. To find
the scan-line value corresponding to a character row number,
use the following formula:
scan line = (row number * 8) + 48

139

2613 $0A35

The default value for this location, set during the screen editor
initialization routine [SC07B], is 208/$D0, which places the
default split at screen row 20. The value here can be changed
in BASIC by specifying a split parameter with the GRAPHIC
statement.

2613 $OA35 FNADRX
Temporary storage for X register
This location is used to preserve the contents of the X register
during the Kernal routine that reads a character from a file-
name [$F7AE].

2614 $0A36 PALCNT
Jiffy clock compensation flag
In systems using the PAL video format, this location is used as
a counter during the Kernal UDTIM routine [$F5F8], It is in-
cremented each time UDTIM is called to update the jiffy clock
locations (160-162/$A0-$A2). When the count has reached 5,
the UDTIM routine is repeated and the counter is reset to
zero. This triggers an extra update of the jiffy clock every fifth
IRQ in PAL systems, so that ten extra jiffy clock "ticks" occur
for each 50 IRQs. This means that the jiffy clock still incre-
ments 60 times per second on PAL-video 128s where the IRQ
rate is only 50 per second. For systems using the NTSC for-
mat, this portion of the UDTIM routine is skipped, so the loca-
tion will always hold its initial value of zero.

2615 $0A37 SPEED
Temporary storage for clock rate register
This location is used to hold the value in the VIC system clock
rate register (53296/SD030) during tape and serial bus opera-
tions. The current register value is stored here at the beginning
of the operation and the register is reset for slow (1-MHz)
mode for the duration of the operation; then the value here is
restored to the register once the operation is completed.

2616 $0 A38 SPRITES
Temporary storage for sprite enable register
This location is used to hold the value in the VIC sprite enable
register (53269/$D015) during tape and serial bus operations.
The current register value is stored here at the beginning of

140

$0A3B 2619

the operation and the register is reset to 0/$00 to disable all
sprites for the duration of the operation. The VIC chip requires
extra timing cycles while sprites are active, so they are dis-
abled to avoid disrupting the precise timing required for tape
and serial operations. Once the operations are complete, the
value here is restored to the VIC register.

2617 $0A39 BLANKING
Temporary storage for VIC control register
This location is used to hold the value in the VIC control reg-
ister at 53265/$D011 during tape operations. The register
value is stored here at the beginning of the tape operation,
before bit 4 of the register is set to %0 to blank the screen
during the operation. Upon completion of the tape operation,
the value here is restored to the register.

2618 $0A3A HOLD_OFF
Custom mode flag
Normally, the system clock is set for the slow (1-MHz) rate
and sprites are disabled during tape and disk operations to in-
sure proper timing. However, this location can be used to
allow the VIC clock and sprite registers to retain their current
settings during such operations. When bit 7 of this location is
set to % 1 , the registers are left unchanged. This location is ini-
tialized to 0/$00 by the IOINIT routine [$E109], part of the re-
set sequence. That setting is not changed by any ROM routine,
so this feature is not used by the system.

2619 $0 A3B LDTB 1_SA
Starting page for 40-column screen memory
The value in this location is used during the screen editor
routines to determine the starting page for 40-column (VIC)
screen memory. During the screen editor initialization routine
[$C07B], this location is set to the value in location 49228/
$C04C, which is currently 4/$04. This specifies screen mem-
ory at address 1024/$0400.

The value here determines where the screen editor thinks
VIC screen memory begins, but not the actual starting address
of the screen. (This location is not a shadow for a VIC regis-
ter.) The actual screen starting address is determined by the

141

2620-2621 $0A3C-$0A3D

value in bits 4-7 of the VIC register at 53272/SD018. If you
change the register value, you should also change the value in
this location, and vice versa.

2620-2621 $0A3C-$0A3D CLR_EA
Working pointer into 80-column memory
These locations are used to hold an address in VDC memory
during the routine that clears a line of text on the 80-column
screen [$C4C0] and the one that copies a line up or down for
scrolling [$C53C],

2622-2623 $0A3E-$0A3F Unused
These locations are unused by any system ROM routine, and
are thus available for your own programming.

2624-2650 $0A40-$0A5A
Screen editor variable storage for the inactive screen
The screen editor variables for whichever screen (40- or 80-
column) is currently inactive are stored here. When the screens
are switched, the screen editor SWAPPER routine [$CD2E] ex-
changes the contents of this area with the values for the active
screen at 224-250/$E0-$FA. Thus, the active and inactive
screens are totally independent, and all window size settings
for the inactive screen will be preserved until the screen be-
comes active again.

Location 2650/$0A5A should not be included in this
range. Only locations 224-249/$E0-$F9 actually hold screen
editor variables. However, the SWAPPER routine incorrectly
copies 27 values instead of the proper 26, so the contents of
location 2650/$0A5A and location 250/$FA will be exchanged
whenever the active screen is switched. Both locations are nor-
mally unused.

2651-2655 $0A5B-$0A5F Unused
None of the locations in this range is used by any system rou-
tine, so all are available for your own programming,

2656-2665 $0A60-$0A69
Storage for inactive tab-stop bitmap
The tab-stop bitmap for whichever screen (40- or 80-column)
is currently inactive is stored here. When the screens are

142

$0AA0-$0AA7 2720-2727

r

switched, the screen editor SWAPPER routine [$CD2E] ex-
changes the contents of this area with the tab-stop bitmap for
the active screen at 852-861/$0354-$035D.

2666-2669 $0A6A-$0A6D
Storage for inactive line-link bitmap
The line-link bitmap for whichever screen (40- or 80-column)
is currently inactive is stored here. When the screens are
switched, the screen editor SWAPPER routine [$CD2E] ex-
changes the contents of this area with the line-link bitmap for
the active screen at 862-865/$035E-$0361.

2670-2687 $0A6E-$0A7F Unused
None of the locations in this 18-byte area is used by any system
ROM routine, so they are available for your own programming.

Monitor Working Storage Area
2688-2751/$0A80-$0ABF

2688-2703 $0A80-$0A8F FNBUFF
Filename buffer for load, save, or verify
The load/save/verify setup routine stores the filename associ-
ated with a monitor L, S, or V command here (up to 16
characters).

2688-2719 $0A80-$0A9F HBUFF
Search pattern buffer
The monitor H (hunt for byte pattern) routine [$B2CE] fills
this buffer with the byte pattern being searched for (up to 32
characters). Characters in the specified memory range are then
compared against the buffer contents to search for a matching
pattern in memory. If the address range for the search in-
cludes this buffer, an artificial match will be found—the buffer
contents will always match themselves.

2720-2727 $0AA0-$0AA7 XFORM
Working storage for base conversion
The hex-to-decimal conversion routine [$BA07] uses these lo-
cations for working storage during the conversion, leaving the
results in 2720-2723/$0AA0-$0AA3 in BCD (binary coded

143

2720-2729 $0AA0-$0AA9 $0AB4 2740

decimal) format. The base conversion routine [$BA47] puts the
value to be converted into 2720-2723/$0AA0-$0AA3 for
manipulation. The routine to print octal, binary, or decimal
values uses 2720-2723/$0AA0-$0AA3 to hold the value to be
displayed.

2720-2729 $0AA0-$0AA9 ASMBUF
Instruction assembly buffer
The assemble routine [$B406] packs the three-character mne-
monic in the instruction being assembled into two bytes and
stores them in 2720-2721/$0AA0-$0AAl. If characters follow
the mnemonic, they are copied into 2722-2729/$0AA2-$0AA9.
If a numeric parameter is found, a dummy value consisting of
a $ character followed by either two or four zeros (depending
on whether the value is greater than 255) is substituted. This
character pattern is then evaluated to determine the addressing
mode for the instruction.

2730 $0AAA FORMAT
Instruction format flag
The routine to calculate the mnemonic and addressing mode
for an opcode [$B659] uses this location to hold a flag value
indicating the addressing mode in use, which determines the
format in which the instruction must be displayed or entered.

$0AAB LENGTH2731
Instruction length
The routine to calculate the mnemonic and addressing mode
for an opcode [$B659] uses this location to hold the number of
bytes which should follow the opcode in the instruction (0-2).

2732-2734 $0AAC-$0AAE MSAL
Three-character mnemonic pattern
The assemble routine [$B406] stores the first three-character
group from the input line in these locations for evaluation as
an ML mnemonic.

2735 $0AAF SXREG
Temporary storage tor X register
The subroutine to determine the proper opcode for a mne-
monic [$B57C], the routine to print hexadecimal byte values,

144

and the routine to test the next buffer character [$B8E7] all
stash the X register contents here upon entry, and restore the
value to the X register upon exit. The routine to decrement the
pointer address or line count stored in 96-98/$60-$62 uses
this location to hold the amount by which the stored value is
to be decremented.

2736 $0AB0 Unused
This location is not used by any 128 ROM routine, and is thus
available for your own programming.

$ 0 A B l OPCODE2737
Calculated opcode
The assemble routine [$B406] uses this location to hold the
opcode calculated for the instruction being assembled.

2738 S0AB2 XSAVE
Temporary storage for X register
The monitor indirect fetch [$B11A], indirect store [$B12A], and
indirect compare [$B13D] routines stash the value in the X reg-
ister here upon entry, then restore the value to the X register
upon exit.

2739 $0AB3 DIRECTION
Transfer direction flag
The monitor compare/transfer routine [$B231] uses this loca-
tion in execution of the T (transfer) command to indicate the
direction in which bytes are to be transferred. For downward
moves (source address greater than destination address), the
flag will be set to zero; for upward moves (destination address
greater than source address), the flag will be set to 128/S80.

$0AB4 COUNT2740
Digit counter
The routine to convert input parameters into numeric values
[$B7CE] uses this location to hold a count of the hexadecimal
digits in the converted value. The routine to print values in oc-
tal, binary, or decimal [$BA47] uses this location as a counter
of digits printed in the value being displayed.

145

2741 $0AB5 $0AC6-$0AFF 2758-2815

2741 $0AB5 NUMBER
Temporary storage for parameter conversion
The routine to convert input parameters into numeric values
[$B7CE] uses this location to hold the numeric value of the in-
put digit currently being evaluated.

2742 $0AB6 SHIFT
Number of bits per digit for base
The routine to convert input parameters into numeric values
[$B7CE] and the routine to print values in octal, binary, or
decimal [$BA47] use this location to hold the number of bits to
be interpreted per digit for the value being converted or
displayed.

2743-2745 $0AB7-$0AB9 TEMPS
Monitor temporary storage
The routine to convert input parameters into numeric values
[$B7CE] uses these locations as working storage when evaluat-
ing decimal digits. Monitor routines which accept two or more
address parameters store the second (ending) address here. For
upward transfers, the compare/transfer routine [$B231] moves
the value here to the working pointer at 102-104/$66-$68.

2746-2751 $OABA-$OABF Unused
These locations are not used by any 128 ROM routines, and
are thus available for your own programming.

Kernal Working Storage
2752-2815/$OAC0-$OAFF

2752 $OACO CURBNK
Counter for function ROM testing
Both the Kernal routine which checks for the presence of ROM
in the internal and external (cartridge) ROM address slots
[$E26B] and the Kernal PHOENIX routine [$F867] which ini-
tializes function ROMs use this location as a countdown for
the number of slots remaining to be tested. The location is set
to 3, then decremented each time a slot is checked or initial-
ized. The routines end when the value here rolls over from
0/$00 to 255/$FF after the fourth slot is tested or initialized.

146

Thus, this location will normally contain 255/$FF upon com-
pletion of either routine.

2753-2756 $0ACl-$0AC4 PAT
Table of identifiers for function ROMs
The Kernal routine which tests for the presence of function
ROMs [$E26B] initializes these locations to 0/$00 before
checking any of the four possible ROM address slots. A ROM
is considered present in the slot if the character codes for the
letters CBM are found at an offset of seven bytes from the
starting address of the slot. If this test pattern is found, the
function ROM ID byte is copied from an offset of six bytes be-
yond the starting address of the slot into the corresponding lo-
cation in this table:
Location ROM slot address
2753/$0ACl 32768/$8000 internal
2754/$0AC2 49152/$C0O0 internal
2755/$0AC3 32768/S8000 external
2756/$0AC4 49152/$C0O0 external

If the identifier byte is l/$01, the cartridge is autostarting
and the test routine immediately calls the cold-start vector for
that ROM. Otherwise, the Kernal PHOENIX routine [$F867],
part of the BASIC cold-start sequence, will call the cold-start
vector for any ROM slots with nonzero entries in this table.

2757 $0AC5 DK_FLAG
This location is mentioned in Commodore literature as "reserved
for foreign screen editors/' but its exact use is unclear. It is un-
used by any routine in the U.S. version of the system ROMs.

2758-2815 $0AC6-$0AFF Unused
This 58-byte area is described in Commodore literature as "re-
served for system use." However, no routines in the current
version of the system ROMs make use of any of these loca-
tions. Still, unless you are desperate for free locations outside
the BASIC area, it's probably best to avoid using these loca-
tions to insure compatibility with future versions of the ROM.

147

2816-3071 $0B00-$0BFF

Cassette Buffer and Disk Boot Buffer
2816-3071/$0B00-$0BFF
The first 192 bytes of this area (2818-3007/$0B00-$0BBF) are
used for the cassette buffer. When you're reading from tape,
file headers are loaded into this area until one is found with
the specified filename. When you're writing to tape, this area
is used to assemble the tape header for the file. When the
buffer contains a tape header, the locations are used as follows:
Location Function
2816/$0BO0 Header type identifier
2817-2818/$0B01-$0BO2 Starting address for file

Ending address for file
Filename

2819-2820/$OB03-$OB04
2821-3007/$OB05-$OBBF
A header type identifier of 1 indicates a relocatable program
file; 3 indicates a nonrelocatable program file; 4, a data file;
and 5, an end-of-tape marker. A type identifier value of 2
means that the block contains data rather than a header. Al-
though the filename can be up to 187 bytes long, such names
are unusual. When a header is read into the buffer, only the
first 16 characters of the filename will be displayed following
the FOUND message. When a header is being assembled, all
unused filename bytes will be set to 32/$20, the value for the
space character.

The cassette buffer is used to hold blocks of data when
data files are read from or written to tape. When a data file is
being written, after the header is written to tape, the first byte
here is set to 2, the identifier for a data block; then the re-
maining 191 bytes are filled with the data to be written to the
file. Only when the buffer is completely full is the block of
data actually added to the file. This is why it is important to
properly close any file opened for writing. If the file is not
closed, the last block of data will not be written to tape. When
a file is opened for reading, after the proper header is identi-
fied, the first block of data is read into the buffer. Subsequent
bytes will be read from the buffer—not directly from tape—
until all 191 data bytes have been read from the buffer; then
the next block will be read into the buffer. See Chapter 9 for
more information on tape data storage.

In the 128, this area has a second function: the boot sector
buffer. If the BOOT_CALL routine [$F890] finds a disk in the
specified drive when it is called, the contents of sector 0 of

148

$0C00-$OCFF 3072-3327

track 1 of the disk are read into this area. The first three bytes
of the buffer are then examined. If those locations (the first
three bytes from the sector) contain the character codes for the
letters CBM, then the routine assumes that a boot disk has
been found and proceeds with the boot process. Refer to the
entry in Chapter 9 for details. It would be possible to simulate
a boot by filling the buffer with the proper values, then jump-
ing into the BOOT_CALL routine at address 63737/$F8F9.

The B0OT_CALL routine is normally executed during
each reset as part of the BASIC cold-start sequence. It can also
be called from the Kernal jump table entry at 65363/$FF53,
and can be initiated from BASIC via the BOOT statement.

Actually, the cassette buffer is not located absolutely at
this area. The base address of the cassette buffer is determined
by the value in locations 178-179/$B2-$B3. Those locations
are initialized to 2816/$0BO0 during the RAMTAS routine
[$E093], part of the reset sequence. No system ROM routines
change that setting, but another free 192-byte area could be
used, with two restrictions: the buffer must start at an address
greater than 511/S1FF, and the buffer must be visible in the
bank 15 memory configuration. The disk-booting routines, on
the other hand, do use the absolute address of this area. This
area will always be used as the boot sector buffer, regardless
of the value in the cassette buffer pointer.

If tape data storage is not being used, this 256-byte area is
available for other uses, such as to hold short machine lan-
guage routines. The cassette buffer has been a popular area for
ML since the days of the first Commodore PET/CBM comput-
ers. However, the contents of this area will be overwritten
whenever the system attempts to boot a disk, including the
time during any reset when the drive is turned on and con-
tains a disk. You should choose another area if you want your
machine language to survive intact following a reset.

RS-232 Input Buffer
3072-3327/$0C00-$0CFF
The routines that receive characters via the RS-232 interface
are executed during NMI interrupts. Any characters received
are held in this area until they can be read, usually by using
the Kernal GETIN routine. This is a circular buffer with no
fixed beginning or end. Location 2585/S0A19 holds the offset

149

3328-3583 $ODOO-$ODFF $1000-$10FF 4096-4351

from the starting address of the buffer to the next character
waiting to be read (called the head of the buffer). Location
2584/$0A18 holds the offset to the next free position in the
buffer (called the tail of the buffer). The buffer is considered
empty when the two offset addresses are equal, and full when
the buffer tail offset is one less than the head offset. Bits 2 and
3 of the RS-232 status byte at 2580/$0A14 indicate, respec-
tively, when the buffer is full or empty.

Actually, the buffer is not located absolutely at this area.
The starting address of the RS-232 input buffer is determined
by the value in locations 200-201/$C8-$C9. The pointer loca-
tions are initialized to 3072/S0C00 by the RAMTAS routine
[$E093], part of the reset sequence. No other system routine
changes the address in that pointer, so the buffer will be lo-
cated here unless you explicitly move it. However, the buffer
can be moved to another free area of memory simply by
changing the address in the pointer. (The area selected must
be visible in the bank 15 configuration.)

If RS-232 communications are not used, this buffer area,
along with the one at 3328-3583/$0D00-$0DFF, is available
for other purposes such as machine language routines or addi-
tional sprite definitions.

RS-232 Output Buffer
3328-3583/$0D00-$0DFF
The routines that transmit characters via the RS-232 interface
are executed during NMI interrupts. Characters are stored in
this area, usually by the BSOUT routine, while awaiting trans-
mission. This is a circular buffer with no fixed beginning or
end. Location 2586/S0A1A holds the offset from the starting
address of the buffer to the next character waiting to be sent
(called the head of the buffer). Location 2587/S0A1B holds
the offset to the next free position in the buffer (called the tail
of the buffer). The buffer is considered empty when the two
offset addresses are equal, and full when the buffer tail offset
is one less than the head offset.

Actually, the buffer is not located absolutely at this area.
The starting address of the RS-232 output buffer is determined
by the value in locations 202-203/$CA-$CB. The pointer lo-
cations are initialized to 3328/$0D00 by the RAMTAS routine
[$E093], part of the reset sequence. No other system routine

150

changes the address in the pointer, so the buffer will be lo-
cated here unless you explicitly move it. However, the buffer
can be moved to another free area of memory simply by
changing the address in the pointer. (The area selected must
be visible in the bank 15 configuration.)

If RS-232 communications are not used, this buffer area,
along with the one at 3072-3327/$0CO0-$0CFF, is available
for other purposes such as machine language routines or addi-
tional sprite definitions.

Sprite Pattern Storage Area
3584-4095/$0E00-$0FFF
This area is reserved by the system to hold sprite pattern defi-
nitions. Each sprite pattern requires 64 bytes and must start at
an address which is an exact multiple of 64/$40. Other free
locations within the current video bank which meet these cri-
teria can also be used for sprite pattern storage, but BASIC
sprite routines such as SPRSAV and SPRDEF assume that
sprite patterns reside in this area. The sprite pointers for the
default screen memory position (2040-2047/$07T8-$07FF) are
initialized during the BASIC cold-start sequence as follows:

Pattern area Pointer value Default sprite
3584-3647/$0E00-$0E3F 56/$38 0
3648-371l/$0E40-$0E7F 57/$39 1
3712-3775/$OE80-$0EBF 58/S3A 2
3776~3839/$0ECO-$0EFF 59/$3B 3
3840-3903/$OFOO-$OF3F 60/$3C 4
3904-3967/$0F40-$0F7F 61/$3D 5
3968-4O31/$0F80-$0FBF 62/$3E 6
4032-4095/$0FCO-$0FFF 63/$3F 7

No system ROM routines change these settings. If your pro-
gram doesn't require sprites, this area can be used for other
purposes such as to hold machine language routines.

Programmable Key Definition String Area
4096-4351/$1000-$10FF
This 256-byte area is used to hold the strings for the ten pro-
grammable keys supported by the 128's screen editor routines:
F1-F8, SHIFT-RUN/STOP, and HELP. Each of the first 10

151

4096-4351 $1000-$!OFF

Key
Fl
F2
F3
F4
F5
F6
F7
F8
SHIFT-RUN/STOP
HELP

bytes of the area (4096-4105/$1000-$1009) holds the length
of one of the definition strings:
Location
4096/$1000
4097/$1001
4098/$1002
4099/$1003
4100/$1004
4101/$1005
4102/$1006
4103/$1007
4104/$1008
4105/$1009

The remaining 246 bytes (4106-435l/$100A-$lOFF) are
available for definition strings. There is no particular limit on
the length of an individual definition string, except that the
combined length of all the definition strings cannot exceed 246
bytes. The definition strings correspond to keys in the order
shown above. The offset to the first character in a particular
string is found by adding the lengths of all preceding defini-
tions. No special characters are used to separate the strings. It
is possible for a key to have no associated definition string, in
which case the length location for the key should be set to
0/$00. The default definitions for the keys are as follows:

Key Default definition
Fl GRAPHIC
F2 DLOAD"
F3 DIRECTORY {RETURN}
F4 SCNCLR {RETURN}
F5 DSAVE"
F6 RUN {RETURN}
F7 LIST {RETURN}
F8 MONITOR{RETURN}
SHIFT-RUN/STOP DL"*{RETURN}RUN{RETURN}
HELP HELP{RETURN}
These definitions, along with the corresponding length values,
are copied from locations 52904-52980/$CEA8-$CEF4 in
screen editor ROM during the Kernal CINT routine [$C07B]. In
BASIC, the KEY statement can be used to change definitions.
From machine language, the Kernal PFKEY routine [$FF65] (or
screen editor KEYSET routine [$C021]) can be used. Pro-
grammable keys are handled by a subroutine [$C6CA] within
the screen editor keyscan routine.

$1133-$1134 4403-4404

152

BASIC Working Storage
4352-4607/$1100-$1IFF

4352-4400 $1100-$1130 DOSSTR
DOS command assembly area
The BASIC statements that issue DOS commands—for ex-
ample, HEADER, COPY, CATALOG, and SCRATCH—use
this area to assemble the command string to be sent to the
disk drive.

4401-4402 $1131-$1132 XPOS
Bitmapped-screen pixel-cursor horizontal position
These locations hold the horizontal (x) coordinate of the cur-
rent position of the pixel cursor on the bitmapped screen. The
range of values here depends on the scale factor currently in
use. If scaling is not used, the value can be found in the range
0-319. In any case, a value of zero specifies the left edge of
the screen. The value here is set to 0/$00 whenever the bit-
mapped screen is cleared, either by the SCNCLR routine or by
adding the clear parameter to a GRAPHIC statement. After
execution of any BASIC graphic statement, this location will
hold the value of the final horizontal pixel position affected by
the operation. The value here can be set explicitly using the
LOCATE statement, which stores the specified horizontal posi-
tion in this location. If the DRAWTO form of the DRAW state-
ment is used, the line will begin at the horizontal position
specified here.

4403-4404 $1133-$1134 YPOS
Bitmapped-screen pixel-cursor vertical position
These locations hold the vertical (y) coordinate of the current
position of the pixel cursor on the bitmapped screen. The
range of values here depends on the scale factor currently in
use. If scaling is not used, the value can be found in the range
0-199. In any case, a value of zero specifies the top edge of
the screen. The value here is set to 0/$00 whenever the bit-
mapped screen is cleared, either by the SCNCLR routine or by
adding the clear parameter to a GRAPHIC statement. After
execution of any BASIC graphic statement, this location will
hold the value of the final vertical pixel position affected by
the operation. The value here can be set explicitly using the

153

4405-4406 $1135-$1136 $116D 4461

LOCATE statement, which stores the specified vertical posi-
tion in this location. If the DRAWTO form of the DRAW state-
ment is used, the line will begin at the vertical position
specified here.

4405-4406 $1135-$1136 XDEST
Final horizontal pixel position for graphics operations
These locations hold the calculated ending horizontal pixel-
cursor position for BASIC graphics operations. The operation is
complete when the value in locations 4401-4402/$1131-$1132
equals the value here.

4407-4408 $1137-$1138 YDEST
Final vertical pixel position for graphics operations
These locations hold the calculated ending vertical pixel-cursor
position for BASIC graphics operations. The operation is com-
plete when the value in locations 4403-4404/$1133-$1134
equals the value here.

4409-4455 $1139-$1167
Working storage for assorted graphics routines
BASIC graphics routines such as BOX, CIRCLE, DRAW, and
PAINT use various locations in this range to perform the cal-
culations necessary to plot the points for the figure being
drawn. The MOVSPR routine also uses some of these loca-
tions for sprite position calculations in those cases where the
sprite is moved relative to the pixel cursor.

4456 $ 1168 CHRPAG
Starting page for character pattern definitions
This location is used during the CHAR routine [$67D7] in the
calculations to determine where character shapes are to be
placed on the bitmapped screen. The value here is the starting
page of character memory. This location will hold the value
from either 4588/$llEC or 4587/$llEB.

4457 $1169 BITCNT
Bit counter for shape retrieval
This location is used during the GSHAPE routine [$658D] as a
counter for the bits to be read from each byte of the storage
string.

4458 $ 116A SCALEM
Scaling flag
This location indicates whether the scaling feature is to be
used when graphics are drawn on the bitmapped screen.
While this location contains 0/$00, scaling will not be used.
When the location contains any nonzero value, the horizontal
and vertical coordinates for all graphics routines will be scaled
according to the values in locations 135-136/$87-$88 and
137-138/$89-$8A. This location is initialized to 0/SOO (scal-
ing off) during the BASIC cold-start sequence, and also when-
ever the clear-screen parameter is included in a GRAPHIC
statement. The routine to execute the SCALE statement
[$6960] will store the first parameter following SCALE (0 or 1)
here.

4459 $116B WIDTH
Line width for bitmapped graphics routines
The value here determines whether the lines drawn by BASIC
bitmapped graphics routines are to be standard width (indi-
cated when this location contains 0/$00) or double width (in-
dicated when this location contains any nonzero value). The
value here is initialized to 0/$00 (normal width) during the
BASIC cold-start sequence. The routine to execute the WIDTH
statement [$71B6] will store the width parameter minus 1 in
this location.

$116C FILFLG4460
BOX fill flag
This location is used during the BOX routine [$62B7] to specify
whether the shape is to be open or filled. If the value here is
0/$00 the shape will be open; otherwise, it will be filled. This
location is initialized to 0/$00 (open shapes) during the
BASIC cold-start sequence. When a BOX statement is exe-
cuted, the seventh parameter (paint) following the statement
will be copied here. If that parameter is omitted, it will default
to 0/$00.

S116D BITMSK4461
Bit mask value
This location is used as a mask value to select individual bits
during the DRAW and SPRDEF routines.

154 155

4462 $116E $117C-$117D 4467-4477

4462 $116E NUMCNT
Temporary storage for assorted routines
This location is used for temporary working storage during the
CHAR, MOVSPR, and SPRDEF routines.

$116F TRCFLG4463
Trace mode flag
This location is used to indicate whether BASIC is in trace
mode. When a program is executed in trace mode, the line
number of each program line is printed as it is executed. Trace
mode is off when bit 7 of this location is %0, and on when bit
7 is % 1 . This location is initialized to 0/$00 (trace off) during
the BASIC cold-start sequence. It is also reset to 0/$00 during
the NEW routine. The value here can be changed using the
TRON and TROFF statements. TRON sets this location to
255/$FF, and TROFF resets it to 0/$00.

4464-4467 $1170-$1173 RENUM_TMPS
Working storage for RENUMBER
These locations are used for working storage during BASIC'S
RENUMBER routine [$5AF8], Locations 4464-4465/$1170-$1171
hold the line number at which renumbering is to begin, and
4466-4467/$1172-$1173 hold the increment by which subse-
quent lines are to be renumbered.

4468 $1174 T3
Loop counter for reading directory entries
This location is used during the CATALOG/DIRECTORY rou-
tine [$A07E] as a counter in the loop to discard extraneous
characters before the block count.

4469-4470 $1175-$1176 T4
Block count for directory entry
These locations are used during the CATALOG/DIRECTORY
routine [$A07E] to hold the block count for each file entry
read from the drive.

4 4 7 1 $ 1 1 7 7 VTEMP3
Working storage for graphics parameter scaling
This location is used for working storage during the routine
that scales graphics parameters [$9DAE] when the SCALE op-
tion is in effect.

156

4472 $1178 VTEMP4
Working storage for graphics parameter evaluation
This location is used during the routine that evaluates param-
eters for graphics routines [$9E6D] to hold the offset to the pa-
rameter being evaluated.

4473 $1179 VTEMP5
Working storage for graphics parameter evaluation
This location is used during the routine that evaluates param-
eters for graphics routines [$9E6D] to hold a value indicating
the parameter type.

4474-4475 $117A-$117B ADRAY1
Pointer to floating point-to-integer conversion routine
These locations point to the routine that converts the floating-
point value in FAC1 (99-103/$63-$67) into a two-byte integer
value in the accumulator (low byte) and Y register (high byte).
The BASIC cold-start sequence initializes the value here to
33951/$849F/ the address of that routine in the current ver-
sion of BASIC ROM.

This pointer is especially useful in conjunction with the
USR function. See the entry in Chapter 5 for details. To per-
form this conversion, it's best to use the indirect JMP ($117A)
instead of the absolute JMP $849F. That way, your program
will still work if the ROM is revised in future versions.

4476-4477 $117C-$117D ADRAY2
Pointer to integer-to-floating point conversion routine
These locations point to the routine that converts a two-byte
integer value in the accumulator (low byte) and Y register (high
byte) to a floating-point value in FAC1 (99-103/$63-$67).
The BASIC cold-start sequence initializes the value here to
31036/$793C, the address of that routine in the current ver-
sion of BASIC ROM.

This pointer is especially useful in conjunction with the
USR function. See the entry in Chapter 5 for details. To per-
form this conversion, it's best to use the indirect JMP ($117F)
rather than the absolute JMP $793C. That way, your program
will still work if the ROM is revised in future versions.

157

4478-4565 $117E-$11D5

4478-4565 $ 117E-$ 1 IDS SPRITE-DATA
Sprite movement control data
The MOVSPR statement has an option to set sprites in motion
at a given angle and speed. These locations hold data concern-
ing sprite motion. For moving sprites, the values here will be
used to generate position values that will be copied to the
shadow registers at 4566-4582/$llD6-$llE6. The locations
are used as follows:

Sprite 0
4478/$117E
4479/$117F
4480/S1180

Speed
Speed countdown
Direction
Horizontal increment (low) 4481/$1181

(high) 4482/$1182
(low) 4483/$1183
(high) 4484/S1184
(low) 4485/$1185
(high) 4486/$1186
(low) 4487/$1187

Vertical increment

Horizontal position

Vertical position

Speed
Speed countdown
Direction

Horizontal increment

Vertical increment

Horizontal position

Vertical position

(high) 4488/$1188

Sprite 4
4522/$! 1AA
4523/$ 11AB
4524/$ 11 AC

(low) 4525/$ 11 AD
(high) 4526/$llAE
(low) 4527/$llAF
(high) 4528/S11B0
(low) 4529/$llBl
(high) 453O/$11B2
(low) 4531/S11B3
(high) 4532/S11B4

Sprite 1
4489/J1189
4490/I118A
4491/$118B
4492/$118C
4493/$118D
4494/$118E
4495/$118F
4496/$1190
4497/S1191
4498/$1192
4499/S1193

Sprite 5
4533/$llB5
4534/S11B6
4535/$]1B7
4536/$11B8
4537/$11B9
4538/$ 11BA
4539/S11BB
4540/$11BC
4541/$11BD
4542/$llBE
4543/$llBF

Sprite 2
4500/$1194
4501/$1195
4502/$1196
4503/$1197
4504/$1198
4505/$1199
4506/$119A
4507/S119B
4508/$119C
4509/$119D
4510/$119E

Sprite 6
4544/$llC0
4545/$llO
4546/$11C2
4547/S11C3
4548/$llC4
4549/$llC5
455O/$11C6
4551/$11C7
4552/$HC8
4553/$llC9
4554/$llCA

Sprite 3
4511/$119F
4512/$11AO
4513/$11A1
4514/$11AZ
4515/$11A3
4516/S11A4
4517/S11A5
4518/$11A6
4519/$11A7
4520/$11 A3
4521/$11A9

Sprite 7
4555/$llCB
4556/$llCC
4557/S11CD
4558/$llCE
4559/$llCF
4560/$11 DO
4561/$I1D1
4562/$IlD2
4563/$llD3
4564/$llD4
4565/$ 11D5

In addition to using the MOVSPR routine, the values here
can be set directly to set a sprite in motion. (The correspond-
ing sprite must be enabled before the motion values have any
effect.) The speed value (0-15) determines how many times
per IRQ interrupt the horizontal and vertical increment values
will be applied to the horizontal and vertical position values.
If the speed value is 0/$00, the corresponding sprite will not
be moved. The speed value is copied to the countdown value
during each interrupt. The direction value can have one of the
following values:
Direction value Sprite motion

0 x increasing, y decreasing
1 x increasing, y increasing
2 x decreasing, y increasing
3 x decreasing, y decreasing

158

$11D6-$11E6 4566-4582

All locations in this range are initialized to 0/$00 during
the BASIC cold-start sequence. The warm-start sequence per-
forms the less dramatic initialization step of resetting all the
speed locations to 0/$00, which stops all sprite motion.

4566-4582 $11D6-$11E6 VIC-SAVE
Shadows for VIC sprite position registers
The contents of these locations are copied into the VIC chip
sprite position registers (53248-53264/$D000-$D010) during
each pass through the BASIC IRQ routine [$A84D]. As long as
the BASIC IRQ routine is active, the VIC registers cannot be
changed directly. Instead, you should store the desired register
value in the corresponding shadow location. All locations in
this range are initialized to 0/$00 during the BASIC cold-start
sequence. The values here can be set using the MOVSPR
statement. The MOVSPR routine [$6CC6] sets the value here
directly when a static sprite position is specified. When a mov-
ing sprite is specified, the movement information is stored in
the table at 4478-4565/$117E-$llD5 and the values here are
updated during each pass through the BASIC IRQ routine
[$A84D]. The locations are used as follows:
Location Register Function
4566/$llD6 53248/$D0O0 Sprite 0 horizontal position
4567/$llD7 53249/$D001 Sprite 0 vertical position
4568/$llD8 53250/$D002 Sprite 1 horizontal position
4569/$llD9 53251/$D003 Sprite 1 vertical position
4570/$1 IDA 53252/$D004 Sprite 2 horizontal position
4571/S11DB 53253/$D005 Sprite 2 vertical position
4572/$llDC 53254/$D006 Sprite 3 horizontal position
4573/$llDD 53255/$D007 Sprite 3 vertical position
4574/$llDE 53256/$D008 Sprite 4 horizontal position
4575/$llDF 53257/$D009 Sprite 4 vertical position
4576/$llE0 53258/$D00A Sprite 5 horizontal position
4577/$llEl 53259/$D00B Sprite 5 vertical position
4578/$llE2 53260/$D00C Sprite 6 horizontal position
4579/$llE3 53261/$D0OD Sprite 6 vertical position
458O/$11E4 53262/$D00E Sprite 7 horizontal position
4581/$11E5 53263/$D00F Sprite 7 vertical position
4582/S11E6 53264/$D010 Most significant bits of horizontal

position

159

4583-4584 $11E7-$11E8

4583-4584 $11E7-$11E8
Shadows for VIC sprite-collision registers
During any pass through the BASIC IRQ routine [$A84D]
where either or both of the sprite-collision latch flags {bits 1-2
of 53273/$D019) are found to be set to % 1 , the contents of
the corresponding VIC chip sprite-collision register will be re-
corded in these locations. For sprite-foreground collisions (in-
dicated when bit 1 of the flag is set), any bits in the register at
53279/$D01F which are set to %1 will also be set to %1 in lo-
cation 4584/$llE8. Likewise, for sprite-sprite collisions (indi-
cated when bit 2 of the flag is set), the %1 bits in the register
at 53278/$D01E will be recorded in location 4583/$llE7.
Thus, these locations will accumulate collision readings until
they are cleared, rather than simply holding the most recent
collision values. The routine for the BASIC function BUMP
[$837C] returns values based on the contents of these loca-
tions, rather than on the actual register contents. BUMP(l) re-
turns the sprite-sprite collision value in 4583/$llE7, and
BUMP(2) returns the sprite-foreground collision value in
4584/$llE8. Either location will be reset to 0/$00 after being
read by BUMP. Both locations are also initialized to 0/$00
during the BASIC cold-start sequence.

4585-4586 $1lE9-$11EA
Shadow for VIC light pen registers
During any pass through the BASIC IRQ routine [$A84D]
where the light pen latch flag (bit 3 of 53273/$D019) is found
to be set to %1 , the contents of the VIC chip light pen regis-
ters at 53267-53268/$D013-$D014 will be copied into these
locations. The routine for the BASIC function PEN [$82AE] re-
turns values based on the contents of these locations, rather
than on the actual register contents. PEN(O) returns the value
in 4585/S11E9, multiplied by 2. PEN(l) returns the value in
4586/S11EA. Either location will be reset to 0/$00 after being
read by PEN. Both of these locations are also initialized to
0/$00 during the BASIC cold-start sequence.

4587 $11EB UPPER-LOWER
Starting page for alternate character set during CHAR
The value here determines the starting page in system mem-
ory for the alternate set of characters used during the CHAR

160

$11EC 4588

statement for bitmapped screens (see location 4588/$llEC for
more information). CHAR will always begin using the charac-
ter set pointed to in location 4588/$llEC. To switch to the al-
ternate character set, the CHAR string must include character
code 14/$0E. Character code 142/$8E switches back to the
default set. This location is initialized to 216/$D8 during
BASIC cold start. That value selects the ROM lowercase/
uppercase set at 55296/$D800 as the alternate character pat-
tern source. If you use a custom character set, you can change
the value here to have CHAR use your new characters. How-
ever, the new character set must be visible in the bank 14
memory configuration, since that is how the system will be
configured when character pattern data is read.

4588 $11EC UPPER-GRAPHIC
Starting page for default character set during CHAR
The value here determines the starting page in system mem-
ory for the default set of characters used during the CHAR
statement. The value here doesn't affect any statement other
than CHAR, and is used only when character shapes are being
placed on a bitmapped screen. (When CHAR is used to place
characters on the text screen, the screen editor printing routines
are used instead.) For bitmapped screens, CHAR will always
begin using the character set pointed to here, regardless of the
character set in use on the text screen. To switch to the alter-
nate character set (starting page in 4587/$llEB), the CHAR
string must include character code 14/$0E. Character code
142/$8E switches back to the character set pointed to here.
Thus, it is possible to mix the two character sets in a single
CHAR statement. This location is initialized to 208/$D0 dur-
ing BASIC cold start. That value makes the ROM uppercase/
graphics set at 53248/$D000 the default character pattern
source. If you use a custom character set, you can change the
value here to have CHAR use your new characters. However,
the new character set must be visible in the bank 14 memory
configuration, since that is how the system will be configured
when character pattern data is read.

161

4589 $11ED $1208 4616

4589 SUED DOSSA
Channel number for BASIC relative file operations
The channel number (secondary address) for BASIC relative
file operations is stored in this location.

4590-4607 $11EE-$11FF Unused
None of these locations is used by any system ROM routine.

BASIC General-Purpose Working Storage
4608-4863/$1200-$12FF

4608-4609 $1200-$1201 OLDLIN
Line number where program stopped
Whenever a BASIC program stops because of an END or
STOP statement, or because the end of the program has been
reached, or because the RUN/STOP key has been pressed,
then the STOP/END routine [S4BCB] will be executed. That
routine stores the line number where the program stopped in
this pair of locations (in low-byte/high-byte format). The
CONT routine [$5A60] uses the value here to determine where
to restart the program. These locations are also used for tem-
porary storage during the RENUMBER routine [$5AF8].

4610-4611 $1202-61203 OLDTXT
Pointer to the start of current line
Each time a BASIC program line is executed, the address of
the first character of program text in the line is stored in these
locations. The high byte (4611/$1203) is also used as a flag to
indicate whether the program can continue after being halted.
The CONT routine [$5A60] will give a CAN'T CONTINUE er-
ror message if the flag byte is 0/$00. The flag location is ini-
tialized to 0/$00 during the CLR routine [$51F8]—you can't
CONTinue a program before it is run. If the program halts with-
out errors, the flag location will hold the high byte of the ad-
dress of the line where the program stopped, which will always
be nonzero, so the program can be CONTinued. However, if
the program stopped because of an error, or if any lines are
changed after the program has stopped, then the flag location
will be reset to zero and the program cannot be CONTinued.

4612-4615 $1204-$1207 PUCHRS
Character definitions for PRINT USING
The values in these locations determine which characters will
be used for the redefinable characters in the PRINT USING
format. The default values are copied from locations $5250-
$5253 in BASIC ROM during the CLR routine, so the default
definitions will be restored each time a program is run. In
BASIC, the definitions here can be changed using the PUDEF
statement.

4612/$1204: This location holds the filler character for the pat-
tern, the one which will be used to fill unused positions in the
format. The default value is 32/$20, the space character.
4613/$1205: This location holds the comma character for the
pattern. The character with the code specified here will be
substituted wherever a comma appears in the PRINT USING
format. The default value is 44/$2C, the comma character.
4614/$1206: This location holds the decimal point character for
the pattern. The character with the code specified here will be
substituted wherever a decimal point (period) appears in the
PRINT USING format. The default value is 46/$2E, the period
(.) character.
4615/$1207: This location holds the monetary symbol charac-
ter for the pattern. The character with the code specified here
will be substituted wherever a dollar sign ($) appears in the
PRINT USING format. The default value is 36/$24, the dollar
sign character.

4616 $1208 ERRNUM
Number of most recent error
Whenever a BASIC error occurs, the ERROR routine [$4D3C]
stores the error number here. The reserved variable ER always
reflects the value in this location. Refer to the entry for the er-
ror message table in Chapter 5 [$484B] for a complete list of
error numbers. Once an error number is stored here, the value
is retained until another error occurs or until the location is
reinitialized. This location is initialized to 255/$FF during CLR
[$51F8] (also executed as part of NEW and RUN). This setting
results in a value of —1 in the reserved variable ER, so when
ER contains that value no error has yet occurred.

162 163

4617-4618 $1209-$120A $1212-$1213 4626-4627

4617-4618 $1209-$120A ERRLIN
Line number where most recent error occurred
Whenever a BASIC error occurs, the ERROR routine [$4D3C]
checks the run mode flag (127/$7F) to see if the error oc-
curred in a program line or an immediate mode line. If the er-
ror was in a program line, the current line number is copied
here from locations 59-60/$3B-$3C. The reserved variable EL
always reflects the value in these locations. Once a line num-
ber is stored here, it will be retained until another error occurs
or until the locations are reinitialized. These locations are ini-
tialized to 65535/$FFFF during CLR [$51F8] (also executed as
part of NEW and RUN). Thus, when the reserved variable EL
contains 65535 no error has yet occurred.

4619-4620 $120B-$120C TRAPNO
Target line number for TRAP statement
When error trapping is enabled with the TRAP statement, the
target line number to which the program will be directed
when an error occurs is stored here (in standard low-
byte/high-byte order). Location 4620/$120C is also used as a
flag to determine whether trapping is enabled. The flag loca-
tion is initialized to 255/$FF during CLR (which is also part of
NEW and RUN), Since the high bytes of all valid line num-
bers are less than 255/$FF, trapping is considered disabled as
long as the flag location contains that value. When trapping is
enabled, the ERROR routine [$4D3C] will transfer control to
the line number indicated here whenever a BASIC error occurs.

4621 $120D TMPTRP
Temporary storage for high byte of TRAP line number
When an error is trapped to a specified line, the ERROR rou-
tine [$4D3C] copies the high byte of the target line number
from 4620/$120C into this location, then stores the value
255/$FF in 4620/$120C. This disables the trapping of errors
during the error-handling routine, which would otherwise put
the program into an infinite loop. The value here is copied
back into 4620/S120C during execution of the RESUME state-
ment [$5F62].

4622-4623 $120E-$120F ERRTXT
Pointer to start of statement where last error occurred
Whenever an error occurs, the ERROR routine [$4D3C] copies
the value in 4610-4611/$1202-$1203 into these locations.
The HELP subroutine that highlights the portion of the line
where the error occurred uses the value here to determine
where to begin the highlighting. The RESUME routine [$5F62]
uses the value here to determine where to resume execution.

4624-4625 $1210-$1211 TEXT_TOP
End-of-program pointer
These locations contain the address of the location immedi-
ately following the end of BASIC program text. The NEW
statement [$51D6] initializes the value here to two bytes be-
yond the address in the start-of-program pointer (45-46/
$2D-$2E). The value here is updated to reflect the new ending
address whenever a line is added or deleted from the program.
An OUT OF MEMORY error occurs if the value here ever ex-
ceeds the value in 4626-4627/$1212-$1213. Following a
LOAD or DLOAD, these locations are set to one byte beyond
the last location to which data was loaded. For a SAVE or
DSAVE, the value here determines the last address from
which data will be saved.

4626-4627 $1212-$1213 MAX_MEM_0
Top-of-BASIC pointer
The value in this pair of locations determines the top of free
memory in block 0 RAM. The address will be one location be-
yond the highest one available for BASIC program text. An
OUT OF MEMORY error will occur when the value in loca-
tions 4624-4625/$1210-$1211 exceeds the value here. The
BASIC cold-start initialization subroutine [$4045] writes the
value 65280/$FF00 here, so that all block 0 RAM below the
MMU registers is available for program text. You can reserve
an area at the top of program memory by reducing the value
in these locations. Unlike some of the other pointers, you need
only store the new value here; no subsequent NEW or CLR is
required.

164 165

4628-4629 $1214-$1215 $1223-$1228 4643-4648

4628-4629 $1214-$1215 TMPTXT
Temporary text pointer storage for DO
This pair of locations is used to temporarily hold the CHRGET
text pointer value (from 61-62/$3D-$3E) during execution of
the DO statement [$5FE0].

4630-4631 $1216-$1217 TMPLIN
Temporary line number storage for DO
This pair of locations is used to temporarily hold the current
line number value (from 59-60/$3B-$3C) during execution of
the DO statement [$5FE0].

4632-4634 $1218-$121A USRPOK
USR function jump vector
The BASIC function USR calls a machine language routine,
like SYS, but it also allows a numeric value to be passed to
and from the ML routine. The routine in BASIC ROM that ex-
ecutes USR ends with a JMP $1218. Location 4632/$1218
contains 76/$4C, the machine language JMP instruction. Loca-
tions 4633-4634/$1219-$121A should contain the address of
the target machine language routine (in the usual Iow-
byte/high-byte format). You must explicitly load these loca-
tions with the address of the target routine before you use
USR. This location is initialized to 32040/$7D28 during
BASIC cold start. This is the address of the routine that issues
the ILLEGAL QUANTITY ERROR message, which is what
you'll get if you use USR without changing locations
4633-4634/$1219-$121A. Refer to Chapter 5 for more infor-
mation on passing values to and from the called routine.

4635-4639 $121B-$121F RNDX
Random number seed value
This five-byte area holds the seed value for BASIC'S random-
number-generator routine [$8434]. When a positive argument
is supplied, the RND routine generates the next random num-
ber by performing calculations and manipulations with the
value here. The generated values aren't really random—any
given seed value here will always produce the same result.
However, the process is sufficiently complicated that the re-
sults aren't easily predictable. Whenever any random number
is generated, the resulting value is stored here for possible use

as the seed for the next random number. Location 4635/$121B
is initialized to 0/$00 during the BASIC cold-start routine.
That is a change from previous Commodore models, where all
five bytes of the seed value were initialized. The zero byte has
the effect of making the initial seed value 0, so the first ran-
dom number value generated after the computer is turned on
or after a reset will always be 1.07870447E-03.

4640 $1220 CIRCLE_SEGMENT
Degrees between segments for CIRCLE routine
This location is used during the BASIC CIRCLE statement rou-
tine [$668E] to hold the number of degrees to turn for each
segment of the circle. The value here is set from the ninth pa-
rameter in the CIRCLE statement, and defaults to 2 if that pa-
rameter is omitted.

4641 $1221 DEJAVU1
Although Commodore literature states that this location holds
a value relating to the reset status, no reference to this location
occurs in any ROM routine.

4642 $1222 TEMPO-RATE
Tempo setting for PLAY statement
The value here determines the tempo for notes played by the
BASIC PLAY statement. The value here is subtracted from the
sound duration value for each voice (in locations 4643-4648/
$1223-$1228) during each pass through the BASIC IRQ rou-
tine. The larger the value here, the faster the duration de-
creases and the faster each note plays. The value here is
initialized to 16/$10 during the SID initialization routine
[$4112], part of both the BASIC cold start and warm start se-
quences. In BASIC, the TEMPO statement can be used to
change the value here.

4643-4648 $1223-$1228 VOICES
Durations for currently active notes
These locations hold the durations of the current PLAY state-
ment notes for each of the SID chip voices:
Voice 0: 4643-4644/$1223-$1224
Voice 1: 4645-4646/$1225-$1226
Voice 2: 4647-4648/$1227-$1228

166 167

4649-4650 $1229-$122A

Bit 7 of each of the high bytes (4644/$1224, 4646/$1226, and
4648/$1228) is used to indicate whether a note is currently
being played by that voice. The voice is active when that bit is
%0. The duration value for each active voice is decremented
by the tempo value specified in location 4642/$1222 during
each pass through the BASIC IRQ routine [$A84D]. When a
duration is decremented below $0000, the high byte will roil
over to $FF, which will set bit 7 to %1 , marking the end of the
note. At this point, the gate bit for the voice will be turned off,
stopping sound output for that voice. Large tempo values
cause the value here to decrease more rapidly, increasing the
speed at which notes are played, while small tempo values in-
crease the note time.

The high bytes for all three voices are set to 255/$FF by
the SID initialization routine [$4112], part of both the BASIC
cold start and warm start sequences. This makes all voices ini-
tially inactive. When the PLAY statement plays a note, the du-
ration for that note will be copied from 4649-4650/$ 1229-$122A
into the slot for the voice specified for that note.

4649-4650 $1229-$122A NTIME
Duration of current note
When the PLAY statement prepares a note, the duration for
the note is first calculated in this location, then transferred to
the proper slot in 4643-4648/$1223-$1228. The value here is
set to 288/$0120, the value for a quarter note, by the SID ini-
tialization routine [$4112], part of both the BASIC cold start
and warm start sequences.

4651 $122B OCTAVE
Octave for current note
The value in this location determines the octave for the cur-
rent notes played by the PLAY statement. This value will af-
fect the calculation of the frequency for the notes. The value
here is set to 4/$04, the octave containing middle C, by the
SID initialization routine [$4112], part of both the BASIC cold
start and warm start sequences. The octave value here remains
in effect until changed by an O parameter in the PLAY string.

168

$123O-$1232 4656-4658

4652 $122C SHARP
Sharp/flat flag
The value in this location holds a value that indicates whether
the current note will be either sharp or flat. The location nor-
mally holds 0/$00 for natural notes. When a # character is
found in the PLAY string, this location will be set to l/$01 to
indicate that the next note should be sharp. When a $ charac-
ter is found in the string, this location will be set to 255/$FF
to indicate that the next note should be flat.

4653-4654 $122D-$122E PITCH
Frequency for current note
When the PLAY statement prepares a note, the frequency for
the note is calculated in these locations before being trans-
ferred into the SID chip registers for the specified voice. The
frequency is calculated by loading a base frequency for the
specified note from the table at 28665-28688/$6FF9-$7010,
adjusted for the octave specified in 4651/$122B. If the flag at
4652/$122C indicates that the note is to be sharp or flat, the
frequency is adjusted accordingly.

4655 $122F VOICE
Voice number for current note
The value in this location specifies which voice will be used to
play the next note. The value here is set to 0/$00 by the SID
initialization routine [$4112], part of both the BASIC cold start
and warm start sequences. This selects voice 0 as the default
voice. The value here will remain in effect until changed by a
V parameter in the PLAY string. The parameter value will be
reduced by 1 to convert the BASIC voice number (1-3) to a
VIC voice number (0-2).

4656-4658 S1230-S1232 WAVE
Waveforms for current notes
The values in these locations determine which waveforms will
be used for each of the three voices:
Voice 0: 4656/$1230
Voice 1: 4657/$1231
Voice 2: 4658/$1232

169

4659 $1233 $123F-$1270 4671-4720

These locations hold the waveform value for the instrument
specified for the voice. All three voices are initialized to the
default value for instrument 0. This selects a default pulse
waveform for all three voices. The value here remains in effect
until changed by a T parameter in the PLAY string. The T pa-
rameter causes the value for the current voice to be changed to
the waveform value for the specified instrument from the table
at 4671-4720/$123F-$1270.

$1233 DNOTE4659
Dotted-note flag
The value in this location determines whether the next note
will be normal or "dotted." Dotted notes play IV2 times as
long as a standard note. This location normally holds 0/S00,
but will be set to 35/$23 if a period (.) is found in the play
string. In this case, the duration of the next note will be in-
creased by 50 percent.

4660-4663 $1234-$1237 FILTSAV
Temporary storage for filter parameters
The filter parameters are copied here from 4721-4722/
$1271-$1272 at the beginning of the FILTER statement rou-
tine [$7046], The filter parameter manipulations are then per-
formed on these locations, and the results are copied back to
the working storage area.

$1238 FLTFLG4664
Filter type index
This location is used as a mask value to select individual filter
control bits when evaluating the FILTER statement parameters.

4665 $1239 NIBBLE
Temporary storage
This location is used as working storage by the FILTER and
ENVELOPE routines.

4666 $123A TONNUM
Current instrument number
This location will hold the instrument number specified in the
most recent ENVELOPE statement.

4667-4669 $123B-$123D TONVAL
Envelope parameters for current instrument
The current parameters for the specified instrument are read
from the instrument table into these locations at the beginning
of the ENVELOPE routine [$7OC1]:
Attack/decay: 4667/$123B
Sustain/release: 4668/$123C
Waveform: 4669/$123D
If the ENVELOPE statement specifies new values for any of
these parameters, the new values replace the original values
here. The values here are then copied back into the table en-
tries for the specified instrument number.

4670 $123E PARCNT
Index into instrument table for current instrument
This value is used during the ENVELOPE routine [$7OC1] to
hold the index to the current set of instrument parameters.

4671-4720 $123F-$1270
Instrument parameter tables
This area is used to hold the envelope parameters for the ten
defined instruments supported by the PLAY statement [$6DE1]:
Instrument Attack/ Sustain/ Waveform Pulse width

Decay Release low byte high byte
0 4671/S123F 4681/S1249 4691/S1253 4701/$125D 4711/S1267
1 4672/$1240 4682/$124A 4692/$1254 4702/$125E 4712/S1268
2 4673/$1241 4683/$124B 4693/S1255 4703/$125F 4713/$1269

4674/$1242 46S4/S124C 4694/$1256 4704/S1260 4714/$126A
4 4675/$1243 4685/$124D 4695/$1257 4705/J1261 4715/S126B
5 4676/$1244 4686/$124E 4696/$1258 4706/S1262 4716/$126C
6 4677/S1245 4b87/$124F 4697/S1259 4707/S1263 4717/$126D
7 4678/S1246 4688/51250 469S/$1Z5A 4708/$1264 4718/S126E
8 4679/$1247 4689/$125I 4699/S125B 4709/$1265 4719/S126F
9 4680/S1248 4690/$1252 4700/S125C 4710/$1266 4720/S1270

All three voices are initially assigned the envelope parameters
for instrument 0. These settings remain in effect until changed
with a T parameter in the PLAY string.

The values for any table entry can be changed using the
ENVELOPE statement. Default instrument table values are
copied into this area from a table in ROM at 28689-28728/
$7011-$7038 during the SID initialization routine [$4112], part
of both the BASIC cold start and warm start sequences. The
default values are as follows:

170 171

4721-4722 $1271-$1272

Envelope

0 (piano)
1 (accordion)
2 (calliope)
3 (drum)
4 (flute)
5 (guitar)
6 (harpsichord)
7 (organ)
8 (trumpet)
9 (xylophone)

Attack/
Decay
9/$09

192/$C0
0/$00
5/$05

148/$94
9/$09
9/$09
9/$09

137/$89
9/$09

Sustain/
Release

0/$00
192/$C0
240/$F0

80/$50
64/$40
33/S21
0/$00

144/$90
65/$41
0/$00

Waveform

65/$41 (pulse)
33/$21 (sawtooth)
17/$ 11 (triangle)

129/S81 (noise)
17/$11 (triangle)
33/$21 (sawtooth)
65/$41 (pulse)
65/$41 (pulse)
65/$41 (pulse)
17/$11 (triangle)

Pulsewidth

1791/$06FF
0/$0000

255/SOOFF
0/$0000

255/$00FF
0/$D000

767/$02FF
2048/$0800
767/$02FF
0/$0000

Note that the pulsewidth values here are different from those
specified in Commodore literature. The official values assume
that all pulsewidth low bytes will be 0/$00. However, these
bytes are not explicitly initialized, so they will hold their pre-
vious values after a reset. On power on, alternating pulse-
width low-byte locations will hold 255/$FF instead of 0/$00.

4721-4722 $1271-$1272 FILTERS
Current filter cutoff frequency
These locations hold the current cutoff frequency register set-
ting, an 11-bit value divided among the two locations with
bits 0-2 of the value in location 4721/$1271 and bits 3-10 of
the value in location 4722/$1272. The value is copied to the
SID cutoff frequency registers (54293-54294/$D415-$D416)
when the XI parameter is included in the PLAY string.

4723 $1273
Current filter control and resonance setting
Bits 0-3 of this location determine which voices will be filtered
and bits 4-7 control the filter resonance setting. The resonance
setting can be changed using the FILTER statement. When an
XI parameter is included in the PLAY string, the filter control
bit in this location corresponding to the current voice will be
set to %1 and the value here will be copied into the SID regis-
ter at 54295/SD417 to enable filtering of that voice. When an
X0 parameter is included, the corresponding voice bit will be
set to %0 and the value will again be copied to the SID regis-
ter to turn off filtering for that voice.

172

$1276-$1278 4726-4728

4724 $1274
Current filter type selection
Bits 4-6 of this location determine the type of filtering cur-
rently enabled. The setting of those bits can be changed using
the FILTER statement. Because the SID register that controls
filter type also controls volume, bits 0-3 of this location reflect
the current volume setting as well. When an XI parameter is
included in a PLAY string, the value here is copied into the
SID register at 54296/$D418 to enable the specified filter type.
This location is set to 15/$0F, the value for all filters off and
maximum volume, during the SID initialization routine [$4112],
part of both the BASIC cold start and warm start sequences.

4725 $1275
Current SID chip volume setting
Bits 0-3 of this location reflect the current volume setting for
the SID chip. The value here can be changed either with the
VOL statement or with the U parameter in a PLAY string. Be-
cause the SID register which controls volume also controls fil-
ter type selection, bits 4-6 of this location will reflect filter
type as well. The value here is set to 15/$0F, the value for
maximum volume, during the SID initialization routine [$4112],
part of both the BASIC cold start and warm start sequences.

4726-4728 $1276-$1278 INT_TRIP_FLAG
Collision flags
The VIC internal interrupt register (53273/$D019) is read dur-
ing each pass through the BASIC IRQ routine [$A84D] to de-
termine if a sprite collision has occurred or if a new light pen
value has been latched. Because that register is automatically
cleared after a read, the system uses these locations to record
which conditions were detected:
Location Collision type
4726/$1276 Sprite-sprite collision
4727/S1277 Sprite-foreground collision
4728/S1278 Light pen latch
If a collision has occurred, the corresponding flag location will
be set to 255/$FF, but only if the collision type has been en-
abled by setting to %1 the appropriate bit in location 4735/
$127F. All three of these locations are set to 0/$00 during the

173

4729-4734 $1279-$127E $1282-$12A2 4738-4770

SID initialization routine [$4112], part of both the BASIC cold
start and warm start sequences. A location set to 255/SFF will
be reset to 0/$00 after COLLISION processing in the GONE
routine [$4A9F].

4729-4734 $1279-$127E INT_ADR
Target line numbers for COLLISION
If the trapping of sprite collisions or light pen latches is en-
abled, a BASIC subroutine will be called (effectively a GOSUB)
whenever one of the selected events occurs. These locations
are used to hold the number (in low-byte/high-byte integer
format) of the starting BASIC program line of the subroutine
to be called. (The subroutine should end with a RETURN
statement.) The values here can be set with the COLLISION
statement.

Low byte
4729/$1279
473O/$127A
4731/$127B

High byte
4732/$127C
4733/$127D
4734/S127E

Collision type
sprite-sprite
sprite-foreground
light pen

INTVAL4735 $127F
Collision enable flag
Bits 0-2 of this location indicate the collision types for which
trapping is currently enabled:
Bit Collision type
0 sprite-sprite
1 sprite-foreground
2 light pen

Trapping is enabled if the bit is set to % 1 . Enabling trapping
will allow the corresponding collision type to be recorded in
the flags at 4726-4728/$1276-$1278. Bits 3-7 of this location
are unused. The value here is reset to 0/$00 during the BASIC
cold-start sequence. This disables all COLLISION branching.

4736 $1280 COLTYP
Collision type index
The value here is used during the COLLISION routine [$7164]
to hold an index into the line number table at 4729-4734/
$1279-$127E.

4737 $1281 SOUND-VOICE
Voice for current SOUND statement
The value in this location specifies which group of entries in
the following table should be loaded with the current SOUND
parameters. The value here is set to the value of the first pa-
rameter in the SOUND statement, minus 1 to convert the
BASIC voice number (1-3) into a SID voice number (0-2).

4738-4770 $1282-$12A2
Table of SOUND statement settings
These locations hold the current SOUND parameters for the
three SID chip voices:
Parameter Voice 0 Voice 1 Voice 2
Duration (low) 4738/$1282 4739/$1283 4740/$1284

(high) 4741/$1285 4742/$2286 4743/$1287
Frequency (low) 4744/S1288 4745/$1289 4746/$128A

(high) 4747/5128B 4748/$128C 4749/$128D
Minimum frequency (low) 4750/$128E 4751/$128F 4752/$1290

(high) 4753/$1291 4754/$I292 4755/$1293
Step direction 4756/$1294 4757/$1295 4758/$1296
Step size (low) 4759/51297 4760/51298 4761/$1299

(high) 4762/$129A 4763/$129B 4764/$129C
Current frequency (low) 4765/$129D 4766/$129E 4767/$129F

(high) 4768/$12A0 4769/$12Al 4770/$12A2

Bit 7 of each of the duration high-byte values (locations
4741-4743/$1285-$1287) is used to indicate whether any
SOUND statement is active for the corresponding voice. If the
bit is %0, the voice is assumed to have an active sound, and
the current frequency value for the voice will be copied into
the SID chip frequency registers during each pass through the
BASIC IRQ routine [$A84D]. See Chapter 5 for a discussion of
the other SOUND effects, such as frequency sweeps. Also dur-
ing each pass through the interrupt routine, the duration value
for each active voice will be decremented. When the value is
decremented below $0000, the high byte will roll over to
255/$FF, setting bit 7 to % 1 , which marks the end of the
sound. At this point the gate bit for the voice will be set to %0
to turn off the sound.

Each of the duration high-byte locations will be set to
255/$FF during the SID initialization routine, part of both the
BASIC cold start and warm start sequences. This will turn off

174 175

4771-4776 $12A3-$12A8

SOUND output for all three voices. The values in these loca-
tions are updated when the contents of 4771-4776/$ 12A3-$12A8
are copied to the entries for the specified voice during execution
of the SOUND statement [$71EC].

4771-4776 $12A3-$12A8
Parameters for most recent SOUND statement
These locations are used to assemble the parameters for the
current SOUND statement. The SOUND statement must in-
clude voice number, frequency, and duration parameters. The
remaining parameters are optional; if they are omitted, default
values are supplied. The base frequency value is initialized to
the specified starting frequency. The locations and default val-
ues are as follows:

Parameter Locations Default value
Duration 4771-4772/$12A3-$12A4
Frequency 4773-4774/$12A5-$12A6
Minimum frequency 4775-4776/$ 12A7-S12A8 0/$0000
Step direction 4777/$12A9 0/$00 (sweep up)
Step size 4778-4779/$ 12AA-S12AB 0/$0000 (no sweep)
Base frequency 4780-4781/$12AC-$12AD
Pulsewidth 4782-4783/$12AE-$12AF 2048/S0800
Waveform 4784/$12B0 2/$02 (pulse)

After all the parameters for a SOUND statement have
been evaluated and assembled here, the values are transferred
to the entries in the table at 4738-4770/$1282-$12A2 for the
specified voice. The base frequency value is used as the begin-
ning current frequency value.

4785 $12B1 POT_TEMP_1
Temporary storage for POT and PEN routines
This location is used as temporary storage during the routines
to perform the BASIC functions POT [$824D1 and PEN
[$82AE].

4786 $ 12B2 POT_TEMP_2
Temporary storage for POT routine
During execution of the POT function routine [$824D], the
potentiometer reading from the SID chip register is stored here
temporarily while the paddle buttons are being read.

176

$12F6-$12F9 4854-4857

4787-4790 $12B3-$12B6 WINDOW_TEMPS
Temporary parameter storage for WINDOW statement
When the WINDOW statement [$72CC] is executed, the pa-
rameter values associated with the statement are stored in
these locations before the screen editor WINDOW routine
[$C02D] is called to actually set the new window margins.
Location Parameter
4787/$12B3 left column
4788/$12B4 top row
4789/$12B5 right column
4790/$12B6 bottom row

4791-4806 $12B7-$12C6
Filename buffer for DOS support commands
The routine which handles the BASIC 7.0 DOS support com-
mands such as SCRATCH and RENAME copies the filename
portion of the command here temporarily while the remainder
of the command is being processed. Once the command is set
up, the filename here is copied into the DOS command buffer
at 4352-4399/$1100-$112F.

4791-4853 $12B7-$12F5 SAVRAM
Sprite pattern storage
These locations are used during the SPRDEF statement routine
[$7372] to hold the original sprite pattern while a sprite is be-
ing defined. If the STOP key is pressed to cancel the current
modifications, the pattern definition here will be restored to
the definition area for the sprite. The first 63 of these locations
are also used during the SPRSAV routine [$76EC] to hold the
sprite pattern to be transferred to a string variable.

4854-4857 $12F6-$12F9
Sprite pattern suffix
During the SPRSAV routine [$76EC], these locations are ini-
tialized with the pattern $17 $00 $14 $00. When a sprite pat-
tern is saved in a string variable, these bytes are appended to
the sprite pattern in 4791-4853/$12B7-$12F5 before the data
is transferred to the string pool. Two bytes are needed as the
tag for the variable, but exactly what this four-byte pattern is
intended to achieve is unclear.

177

4858 $12FA

4858 $12FA DEFMOD
Sprite mode indicator for SPRDEF
This location is used during the SPRDEF statement routine
[$7372] to hold a value indicating the mode of the sprite cur-
rently being defined. A value here of 0/$00 indicates a stan-
dard sprite, while a value of 128/$80 indicates a multicolor
sprite.

4859 $ 12FB LINCNT
Sprite pattern line count for SPRDEF
This location is used during the SPRDEF statement routine
[$7372] to hold the number of the vertical line (0-20) within
the sprite pattern which is currently being defined.

4860 $12FC SPRITE_NUMBER
Sprite number for SPRDEF
This location is used during the SPRDEF statement routine
[$7372] to hold the number (0-7) of the sprite currently being
defined.

4861 $ 12FD IR9_WRAP_FLAG
BASIC IRQ activity flag
This location is tested at the beginning of the BASIC IRQ ser-
vice routine [$A84D]. If it contains any nonzero value, the
routine exits immediately. The location is initialized to 0/$00
during the SID initialization routine [$4112]. The BASIC IRQ
routine increments this location (to l/$01) when it begins, so
the test prevents the routine from being restarted if another in-
terrupt occurs before the current pass is completed. The IRQ
routine resets the value here to 0/$00 before exiting.

The BASIC portion of the IRQ sequence is responsible for
moving sprites, detecting sprite collisions, and handling the
BASIC sound statements. The routine maintains a number of
shadow locations which are copied into VIC and SID chip
hardware registers during each interrupt. Sometimes you may
want to turn off these shadow locations to have direct access
to the hardware registers. One way to do that is to store some
nonzero value in this location. While turning off the BASIC
IRQ routine will give you direct access to the hardware regis-
ters, you should keep in mind that it will also effectively dis-
able the BASIC statements MOVSPR, COLLISION, SOUND
and PLAY.

178

$13OO-$1BFF 4864-7167

4862-4863 $12FE-$12FF Unused
These locations are not used by any 128 ROM routine.

Application Program Area
4864-7167/$1300-$lBFF
None of the 2304 (2V4-K) locations in this area are used by
any system ROM routines. Thus, this area is free for your own
programming uses—machine language routines, alternate
screens, and so on. Because this is the largest block of free
RAM protected from BASIC, the area is becoming extremely
popular with machine language programmers, much like the
area at 49152/$C000 in the Commodore 64. As a result, you'll
probably encounter instances where two programs you want
to use simultaneously will be incompatible because they reside
at overlapping addresses within this range.

One thing this area cannot normally be used for is to hold
additional sprite patterns or custom character patterns. While the
standard ROM-based character sets are enabled, the VIC chip
will see character ROM at addresses 4096-8191/$1000-$lFFF.
As a result, this RAM is not visible to the VIC chip and cannot
be used for sprite or character information. Sprite or character
patterns can be stored here if the ROM-based characters are
disabled; refer to the entry for location l/$01 in Chapter 2 for
details.

179

RAM Usage
The Commodore 128, as its name implies, has 128K of pri-
mary RAM in two 64K blocks. Memory configurations are dis-
cussed in detail in Chapter 1, but in general the 128 sees RAM
from block 0 in even-numbered banks (0, 4, 8, 14) and RAM
from block 1 in odd-numbered banks (1, 5, 9). A notable ex-
ception is bank 15, where RAM from block 0 is seen. Another
significant exception is that in every bank the system normally
sees RAM from block 0 in locations 2-1023/$0002-$03FF.
(Remember that locations 0-l/$00-$01 are used for the pro-
cessor's on-chip I/O port and are never seen as RAM.) This
means that the lowest IK of RAM in block 1 normally remains
invisible and unused. As explained in Chapters 2 and 3, the
common IK block and locations 1024-7167/$0400-$lBFF in
block 0 have special uses. Also, remember that MMU registers,
rather than RAM or ROM, are seen at addresses 65280-65284/
$FF00-$FF04 in every bank configuration.

Two pointers in page 10/$0A indicate the range of loca-
tions in block 0 considered free RAM. Locations 2565-2566/
$0A05-$0A06 point to the lowest free address, and locations
2567-2568/$0A06-$0A07 point to one byte beyond the high-
est free address. These pointers are initialized during the
RAMTAS subroutine [$E093], part of the reset sequence, to
7168/S1C00 and 65280/$FF00, respectively. The pointer val-
ues can also be changed with the Kemal MEMTOP [SFF99]
and MEMBOT [$FF9C] routines. However—unlike earlier
Commodore computers—these pointers have no effect on the
range of addresses used by BASIC and are not read by any
other Kernal or BASIC routine.

BASIC RAM Usage
For BASIC programming, the areas of RAM normally available
for storage of programs and variables are locations 7168-65279/
$1COO-$FEFF in block 0 and 1024-65279/$0400-$FEFF in
block 1. This is a total of 122,368 bytes of available RAM
space (illustrated in Figure 4-1). This explains why part of the
message you see when you turn on or reset the computer says
122365 BYTES FREE. (The missing three bytes are to account

183

for the zero byte required by BASIC before the first program
line and the two zero bytes used to mark the end of the
program.)

Actually, it's a bit misleading to claim that many free
bytes, since you can't write a BASIC program 120,000 bytes
long. For BASIC, the free RAM is divided into two distinct
segments: the 58,112 bytes in block 0 for BASIC program text
and the 64,256 bytes in block 1 for variables and strings. (By
comparison, the Commodore 64 offers 38,911 bytes for pro-
gram text and variables combined.)

As noted in Figure 4-1, there is one additional factor
which affects the amount of memory available for program
text. When you use a GRAPHIC statement to set up a high-
resolution screen, an additional 9K is reserved in block 0: IK
at 7168-8191/$1COO-$1FFF for color information and 8K at
8192-16383/$2000-$3FFF for the high-resolution-screen bit-
map. In this case, the amount of RAM available for BASIC
program text is reduced to 48,896 bytes (locations 16384-65279/
$4000-$FEFF in block 0). If a program is already in memory
when the GRAPHIC statement is executed, the program is
moved upward in memory (the starting address will be
changed from 7169/$1CO1 to 16385/$4001) and relinked to
work at the new addresses. Once a high-resolution memory
area is established, it remains allocated until a GRAPHIC CLR
statement is executed, at which time the program text is moved
down to start at 7169/$1CO1 again.

Pointers in zero page and page 18/$ 12 are used to specify
the length of program text and variables. BASIC program text
is assumed to begin at the address in block 0 specified in loca-
tions 45-46/$2D-$2E. That pointer is initialized to 7169/
$1CO1 during the BASIC cold start routine [$4023]. Unlike the
Commodore 64, which sets its start-of-BASIC pointer accord-
ing to the value in the system's start-of-free-memory pointer,
the 128 sets the address value without regard for the value in
2565-2566/$0A05-$0A06. Locations 4626-4627/$1212-$1213
point to one byte beyond the highest available address in
block 0. That pointer is initialized during BASIC cold start to
65280/$FF00, again without regard to the Kernal memory
pointer value in 2567-2568/$0A07-$0A08. The actual ending
address of the program text currently in memory is specified
by the value in 4624-4625/$1210-$1211. That pointer is ini-
tialized during the BASIC CLR routine [$51F8] to two bytes

184

Figure 4-1. BASIC RAM Usage

Bank 0

beyond the starting address in 45-46/$2D-$2E. An OUT
OF MEMORY error occurs if the address in 4624-4625/
$1210-$1211 reaches the value in 4626-4627/ $1212-$1213.
The ending address pointer is set after a BASIC LOAD [$912C],
and the BASIC SAVE routine [$9112] uses the values in the
starting and ending address pointers as the starting and end-
ing address for the block of memory to be saved.

The address in the pointer at locations 47-48/$2F-$30
marks the start of scalar (nonarray) variables in bank I. The
pointer is initialized to 1024/$0400 during the BASIC cold
start routine. A pointer at 49-50/$31-$32 marks the end of
scalar variables and the beginning of arrays; another pointer at
51-52/$33-$34 marks the end of arrays and the beginning of
free memory in block 1. Both of these pointers are reset to the
value in 47-48/$2F-$30 during the BASIC CLR routine. The
pointer at 57-58/$39-$3A holds an address which is one byte
beyond the highest address of free memory in block 1. It is
initialized during BASIC cold start to point to 65280/$FF00.
The free memory in block 1 is used to hold strings of all
types—constants, variables, and arrays. The string pool starts
at the top of free memory and is filled downward toward the
bottom of free memory indicated in 51-52/$33-$34. The
pointer at 53-54/$35-$36 marks the current address of the
bottom of the string pool. That pointer is reset to the value in
57-58/$39-$3A by the BASIC CLR routine. An OUT OF
MEMORY error occurs when the value in 53-54/$35-$36
reaches the value in 51-52/$33-$34.

Reserving RAM
There are occasions when you will want to divert an area of
RAM from its normal usage. For example, you may need to set
aside space for a machine language routine, an alternate
screen display, or a data buffer. For machine language (ML)
programming, you can use any area of RAM if you are willing
to learn the intricacies of the 128's banking scheme. Other-
wise, it's best to restrict your programming to certain known
areas. For a machine language routine to be used in conjunc-
tion with a BASIC program, you'll need to select an area
which BASIC doesn't normally use, or to take away some
memory that otherwise would be used for program text or
variable storage. As noted in Chapter 3, locations 4864-7167/
$13OO-$1BFF are currently unused (even though they are

186

called "reserved" in Commodore literature). This 2304-byte
area is the largest unused area of protected RAM in the 128,
and it is becoming extremely popular with 128 ML program-
mers—much like the $C000 block in the Commodore 64. You
can expect to see many ML programs using this area.

Other, shorter blocks are also available if certain BASIC
features are not used. If tape is not used, the 256 bytes at
2816-3071/$0B00-$0BFF are available. However, unlike other
free blocks, this page may be overwritten during a reset be-
cause disk boot sectors are read into this area. Thus, the time-
honored Commodore tradition of using the cassette buffer for
short ML routines is less suitable in the 128. (It's annoying to
have to reload your routine after each reset.) If your program
doesn't use RS-232 communications, the two RS-232 buffers at
3072-3583/$0C00-$0DFF provide a 512-byte workspace. This
is probably the best area for short ML routines that you wish
to use in conjunction with BASIC. (Unlike the cassette buffer,
this area survives reset intact.) If your program does not use
sprites, the 512-byte sprite definition area at 3584-4095/
$0E00-$0FFF is also available. Of course, if your program uses
neither tape nor RS-232 nor sprites, you can use the full 1280
bytes at 2816-4095/$0B00-$0FFF or any subsection thereof.

To use a large ML program in conjunction with BASIC,
there is an easy way to reserve over UK of protected RAM.
However, this technique works only if neither the BASIC nor
the ML program requires high-resolution graphics. The trick is
to use the BASIC GRAPHIC statement to set aside a high-
resolution screen area at 7168-16383/$lC00-$3FFF. As men-
tioned above, this area remains allocated until a GRAPHIC
CLR statement is executed. Simply begin your BASIC program
with a line like GRAPHIC 1:GRAPHIC 0 (or GRAPHIC
1:GRAPHIC 5 if you want to use the 80-column display).
Then BLOAD the machine language program into the reserved
area. In addition to the 9K screen area, you can also use the
contiguous unused area just below, at 4864-7167/$1300-$lBFF.
If you want to use a machine language program in conjunction
with BASIC and high-resolution graphics, you'll have to resort
to bank-switching techniques if the program is too large to fit
in the unused area at 4864/$1300.

It's possible to reserve space above or below either the
BASIC or variable/string areas. To reserve space below the
BASIC program text, increase the value in the start-of-BASIC

187

pointer at 45-46/$2D-$2E by the number of bytes you want
to reserve. (To reserve an even number of 256-byte pages, you
need only change the value in 46/$2E.) Two other steps are
also necessary: BASIC requires a zero byte below the first lo-
cation in its program text space, and a NEW operation is re-
quired to reset other important memory pointers. For example,
to reserve three pages (768 bytes) below the normal start of
BASIC, you would use a statement like this:
POKE 46,31:POKE 31*256,0:NEW

After this statement is executed, the area at 7168-7935/
$1COO-$1EFF is protected from BASIC until the next time the
BASIC cold start routine is performed (normally during the
next reset sequence). The pointer value is unaffected by
RUN/STOP-RESTORE. This technique is less useful when a
high-resolution screen area is allocated. In that case, the start
of BASIC is moved to 16384/$4000. The technique for reserv-
ing space at the start of BASIC still works, but the reserved
memory will lie above 16383/$3FFF, which is the highest ad-
dress seen as RAM in bank 15—the bank in which Kernal
ROM is visible and to which BASIC defaults. Thus, a routine
above that boundary will be invisible unless you tinker with
the MMU configuration register.

Space can be reserved at the top of the BASIC program
area by reducing the value in the pointer at 4626-4627/
$1212—$1213 by the desired number of bytes. (Again, if you
wish to reserve an even number of 256-byte pages, you can
simply reduce the value in 4627/$l213.) No additional steps
are required other than changing the pointer value. This tech-
nique was often used in the Commodore 64 to reserve space
for machine language routines; its usefulness is more limited
in the 128 because of the 16384/$4000 boundary of RAM visi-
ble in bank 15, which was mentioned above. To easily use the
reserved area for an ML routine in conjunction with BASIC,
the top of memory must be lowered sufficiently to make at
least a portion of the reserved area appear below the bound-
ary of RAM visible in bank 15; this dramatically reduces the
amount of memory available for program text. It's not even
possible when a high-resolution screen area is allocated. The
technique can, however, be useful for setting aside an area in
block 0 for a buffer, a reserved area of memory for data
storage.

188

You can also reserve space in block 1, either above or be-
low the variable/string area. To reserve space below variables,
add a value corresponding to the number of bytes to be re-
served to the address in the pointer at 47-48/$2F-$30, (As
with the other pointers, you can simply increase the value in
48/$30 if you are reserving an even number of 256-byte
pages.) This step must be followed by a BASIC CLR statement
to reset other variable pointers, so it should be performed
early in the program (CLR erases all variable values). The fol-
lowing line reserves an additional IK at the bottom of variable
space, locations 1024-2047/$0400-$07FF in block 1:
100 POKE 48,8:CLR
Once established, the reserved area will remain intact until the
next time the BASIC cold start routine is executed, normally
at the next reset. The setting is unaffected by RUN/STOP-
RESTORE.

Since this reserved RAM is in block 1, it can't be used for
ML routines as easily as the RAM from block 0. There is no
standard bank configuration that makes BASIC and Kernal
ROM visible in conjunction with block 1 RAM. Of course, it is
possible to access Kernal or BASIC routines indirectly by using
the JSRFAR or JMPFAR routine. One use for a reserved area in
block 1 would be for an alternate 40-column screen. See the
entry for the MMU RAM configuration register (54535/$D506)
information on using block 1 for VIC-II screen memory.

To reserve space above strings, subtract a value cor-
responding to the number of bytes to be reserved from the ad-
dress in the pointer at 57-58/$39-$3A. (As with the other
pointers, you can simply increase the value in 58/$3A if you
are reserving an even number of 256-byte pages.) This step
must also be followed by a BASIC CLR statement to reset
other string pointers, so it should be performed early in the
program (CLR erases all variable values). The following line
reserves 31K at the top of string space, locations
32768-65279/$8000-$FEFF in block 1:
100 POKE 58,128:CLR

Once established, the reserved area will remain intact until the
next time the BASIC cold start routine is executed—normally
at the next reset. The setting is unaffected by RUN/STOP-
RESTORE. As mentioned above, this area can't be easily used
for machine language routines since it is in block 1. One ap-

189

propriate use for a reserved area here would be for a data
buffer—to hold downloaded text in a telecommunications pro-
gram, for example.

Using ML Without BASIC
You have several options when using ML programs alone,
without BASIC. The simplest, if your program is less than 9K
(9216 bytes) long, is to leave the system in its default bank 15
configuration and use the visible area of block 0 RAM at
7168-16383/$lC00-$3FFF. (If you need a few more bytes,
you can stretch the start of the program down to the bottom
of the reserved area at 4864/$1300.) With this setup, you have
full access to the I/O chip registers and all the routines in
BASIC and Kernal ROM.

If you need more space, but still want access to Kernal
routines, you can change the settings of bits 1-3 of the MMU
configuration register to switch out BASIC ROM. In this case,
you'll have access to over 43K of contiguous RAM, locations
4864-49151/$1300-$BFFF. If you want to use a high-resolution
screen in conjunction with your ML routine, it's easiest to set
up the screen in its normal location (7168-16383/$1COO-$3FFF).
This means that—if your program is too long to fit below the
screen areas—you'll need to switch out BASIC to have some
RAM visible with Kernal ROM. (You could still use the Kernal
JSRFAR routine to access BASIC routines—if you wanted to
use some of the graphics drawing routines, for example.)

Although it is possible to set up a custom MMU configu-
ration that makes block 1 RAM visible with either BASIC or
Kernal ROM (or both), there's rarely a need for such gyrations.
It's usually easiest to locate your executable machine language
in block 0 and use block 1 for data storage.

Several obscure techniques are available to squeeze a few
more bytes out of the 128. For example, you can gain access to
the lowest IK of block 1 RAM, which is normally covered by
the common area from block 0, by changing the value in the
MMU RAM configuration register (54534/$D506). See the dis-
cussion of the MMU in Chapter 8 for details.

Page 255/$FF
The highest page of memory, locations 65280-65535/
$FFO0-$FFFF, in each RAM block is normally unused by
BASIC and contains a few bytes of free RAM as well as some

190

important routines and vectors. The MMU configuration and
load configuration registers always appear in the lower five
bytes of this area, locations 65280-65284/$FF00-$FF04. They
should never be disturbed unless you know the effect of the
values you are storing there (see Chapter 8 for more infor-
mation on the MMU). You should also exercise care when
changing the contents of locations 65285-65348/$FF05-$FF44
in either RAM block, as these areas contain copies of the inter-
rupt and reset handling routines. (These areas are initialized
by the Kernal RESET routine [$E000].) If an interrupt or reset
occurs while the system is configured for a bank where Kernal
ROM is not visible—bank 0 or 1, for example—a crash will
occur if the area in the visible RAM block does not contain a
routine to redirect the reset or interrupt to a proper handling
routine. See the entries for these addresses in Chapter 9,
"Kernal ROM," for more information.

Free space in this page includes the 181 bytes at locations
65349-65529/$FF45-$FFF9 in block 0 and the 176 bytes at
65349-65524/$FF45-$FFF4 in block 1. However, locations
65488-65519/$FFD0-$FFEF in block 0 will be overwritten
whenever the computer is reset. As mentioned in Chapter 1,
the Z80 microprocessor has control briefly after a reset or
when the computer is first powered on. The initialization steps
performed by the Z80 include copying two routines into block
0 RAM. One, at 65488-65503/$FFD0-$FFDF, is an 8502 ma-
chine language routine to surrender control to the Z80; the
other, at 65504-65519/$FFE0-$FFEF, is a Z80 machine lan-
guage routine to surrender control to the 8502. These routines
have no use in 128 mode—they can be used only in CP/M
mode—but they are recopied to block 0 during each reset.
{Actually, there is one situation where disturbing these routines
can cause a problem. If you overwrite the routine at 65488/
$FFD0 and then attempt to start CP/M with a BASIC BOOT
command, the system will crash. The machine language in the
CP/M boot sector expects that routine to be intact.)

Locations 65525-65529/$KFF5-$FFF9 in block 1 have a
special use. The first three bytes, locations 65525-65527/
$FFF5-$FFF7, are an initialization signature; after the Kernal
RESET routine [$E000] has been performed at least once, these
locations will contain the character codes for the letters CBM.

191

As long as the signature locations contain these codes, the ini-
tialization test subroutine will take an indirect jump to the ad-
dress specified in locations 65528-65529/$FFF8-$FFF9, called
the system vector or soft reset vector. This vector normally
points to 57892/$E224 in Kernal ROM, a routine that does
nothing more than reinitialize the signature and vector. You
can change the vector to point to a routine of your own to add
additional steps to the reset sequence or to initiate an entirely
new reset sequence. One restriction applies: The routine you
specify in the vector must be visible in the bank 15 configura-
tion since that is how the system is set up when the jump
through the vector is taken.

When tapping into the RESET routine, you need to be
aware of what has happened before the vector jump is taken
and what hasn't happened yet. Before entering the subroutine
that takes the jump through the vector, the RESET routine
[$E000] resets the stack pointer to the top of the stack, config-
ures the system for bank 15, resets the other MMU registers to
their default values, and recopies the common routines to
65285-65348/$FF05-$FF44, 674-763/$02A2-$02FB, and
1008-1020/$03F0-$03FC. However, the initialization routines
IOINIT, RAMTAS, RESTOR, and CINT are normally called
after the return from the jump. This means that you can't use
the vector diversion to change default indirect vector settings
or to alter screen parameters if your routine ends with RTS to
return to the normal reset sequence. It also means that when
you use the vector to substitute your own reset sequence, you
may need to call one or more of these subroutines to complete
system initialization. At least the IOINIT routine [$E109] or
some equivalent initialization routine is necessary, since the
reset signal generated by pressing the RESET button also re-
sets the VIC and VDC (8563) video chips, clearing all chip
registers to zero. IOINIT initializes the video chip registers to
their standard settings.

One interesting use of this vector is to make a machine
language program unstoppable by anything short of turning
off the computer. To accomplish this, change the vector to
point to the initialization routine of the program to be made
unstoppable. That initialization step should include calls to at

192

least the IOINIT and CINT routines, and it should also disable
RUN/STOP-RESTORE by redirecting the NMI vector. Here is
a short example:

ocoo0C02
0C04
OC06
0C08
OCOA
OCOD
OCOF
0C11
0C13
0C16
0C18
0C1A
0C1B
0C1E
0C20
0C23
0C25
OC28
0C2B
0C2E
0C30
0C33
0C35
0C38
0C39

LDA
STA
LDA
STA
LDA
STA
LDA
LDX
LDY
JSR
LDA
LDX
INY
JSR
LDA
STA
LDA
STA
JSR
JSR
LDX
LDA
BEQ
JSR
INX
BNE

#$F8
$C3
#$FF
$C4
#$C3
$02B9
#$28
#$01
#$00
$FF77
#$0C
#$01

$FF77
#$33
$0318
#$FF
$0319
$FF84
$cooo
#$00
$0C40,X
$0C2E
$FFD2

$0C30
;Text for message
>0C40
>0C48
>0C50

49 20
42 45
45 44

43 41
20 53

;Use Kernal INDSTA routine to
change system reset vector

; in bank 1 to point to the
; routine at $0C28

;Change the INMI indirect vector
; to point to the interrupt return
; routine (disables RUN/STOP-
; RESTORE)
;Kernal IOINIT routine
;Kernal CINT routine
;Loop to print message repeatedly
; text at $0C40

4E 27 54 20
54 4F 50 50

21 0D0DO0
Use J F0C00 {from the monitor) or BANK 15:SYS 3072

(from BASIC) to set the new pointer values and start the rou-
tine. Once started, it cannot be stopped with either reset or
RUN/STOP-RESTORE. Obviously, you should make sure
that your ML program is fully debugged—and be sure that
you have a backup copy, just in case it isn't—before you use
this technique to make the program unstoppable.

The highest six addresses in each RAM block, locations
65530-65535/$FFFA-$FFFF, contain copies of the processor

193

reset and interrupt vectors. This area is initialized during the
reset sequence, and, like the handling routines to which these
vectors point, these vector addresses should be changed with
care. The system will crash if a RAM vector does not contain
the address of a valid handling routine when an interrupt or
reset occurs while that block is visible. See the entries for
these addresses in Chapter 9 for more information on the pro-
cessor vectors.

194

BASIC ROM

The Commodore 128's BASIC 7.0 occupies the 28K of ROM
between 16384-45055/$4000-$AFFF. That represents signifi-
cant growth from the BASIC 2.0 of the Commodore 64, which
filled only about 9K. The expansion is the result of the addi-
tion of a variety of graphics, sound, and sprite statements, as
well as enhanced commands for disk operations. Because
BASIC is so large, it's not practical to provide a detailed de-
scription of every routine—that would fill another book. In-
stead, the entry points to most of BASIC'S important routines
are listed, with short explanations of what the target routines do.

Adding to BASIC
Even with all the added features of BASIC 7.0, you may find
it lacking and wish to modify BASIC to add new commands.
One common way to do this in the Commodore 64 is to copy
BASIC ROM into RAM, then modify and use the RAM-based
version. This scheme can't be used on the 128, even though it
does have RAM under BASIC ROM like the 64. While it's pos-
sible to copy BASIC into ROM, there's no easy way to keep a
RAM-based version of BASIC executing in RAM. The bank-
switching routines in 128 BASIC ROM keep the system con-
figured for banks 14 or 15, where BASIC ROM is visible,
while BASIC routines are being executed.

The formal method of adding new statements or functions
is to tap into the indirect vectors at 780-785/$030C-$0311
and 764-765/$02FC-$02FD. This allows you to add new
statements or functions that use the two-byte extended tokens.
Currently, extended statement tokens 39-255/$27-$FF and
extended function tokens ll-255/$0B-$FF are unused and
thus available for your additional keywords.

Three separate steps are required to add a new keyword.
You must provide for it to be tokenized, detokenized (listed),
and executed. The indirect vector at 780-781/$030C-$030D
lets you patch into the CRUNCH routine to tokenize your new
extended token keywords. The vector at 782-783/
$030E-$030F lets you patch into the IQPLOP routine to
detokenize these new keywords when a line containing a new

197

keyword is listed. The other two vectors allow you to patch
into the statement and function execution routines to provide
for the handling of the new keywords (784-785/$0310-$0311
for statements and 764-765/$02FC-$02FD for functions). The
following example shows the addition of a statement and a
function. The statement, STORE, can be used to store values
in the VDC chip internal registers (see Chapter 8 for details of
the VDC chip). The format of the statement is STORE register,
value. The register parameter is the VDC register number
(0-36) and the value parameter is the value (0-255) to be
stored in that register. The function, RAD, converts an angle
value from degrees to radians, the system used in BASIC func-
tions. The format for the function is KAD(angle), where angle
is the angle value in degrees. Since this is a function, it must
be used on the right side of an operation, as in A = RAD(45).

;Redirect ICRNCH2 vector to $1629 to
; tokenize new keywords

;Redirect IQPLOP2 vector to $165A to
; list new keywords

;Redirect IGONE2 vector to $167B to
; handle new statement

;Redirect ESC_FN vector to $16A2 to
; handle new (unction

;Tokenize new keywords
.Stash current character
;Search for keyword in table at $1650

;If no match found, try other table
;Convert index (with bit 7 set) to token (39/$27)
;Set flag for extended statement token

.Search for keyword in table at $1656

;Exit if no match found
.Convert index (with bit 7 set) to token (11/$OB)
;Set flag for extended function token

1600
1602
1605
1607
160A
160C
160F
1611
1614
1616
1619
161C
161E
1620
1623
1625
1628

1629
162B
162D
162F
1632
1634
1636
1638
163A
163C
163E
1641
1643
1645

LDA
STA
LDA
STA
LDA
STA
LDA
STA
LDA
STA
LDA
STA
LDA
STA
LDA
STA
RTS

STA
LDY
LDA
JSR
BCC
ADC
LDX
BEQ
LDY
LDA
JSR
BCC
ADC
LDX

#$29
$030C
#$16
$030D
#$5A
S030E
#$16
$030F
#$7B
$0310
#$16
$0311
#$A2
$02FC
#$16
$02FD

$02
#$50
#$16
543E2
$163A
#$A6
#$00
$1647
#$56
#$16
$43E2
$164A
#$8A
#$FF

198

1647 CLC
1648 BCC $164D ;Exit with carry clear if keyword found
164A SEC
164B LDA $02 ;Restore text character
164D JMP $4321 .Return to ICRNCH routine
>1650 53 54 4F 52 C5 00 ;STORE
>1656 52 41 C4 00 ;RAD

;List (detokenize) new keywords
165A CPX #$00 ;Was this statement or token?
165C BNE S166C
165E CMP #$28 ;Was statement token less than 40?
1660 BCS $1678
1662 LDY #$50 ;Use table entry at $1650 to list
1664 LDA #$16
1666 STY $24
1668 STA $25
166A BCC $1678
166C CMP #$0C ;Was function token less than 12?
166E BCS $1678
1670 LDY #$56 ;Use table entry at $1656 to list
1672 LDA #$16
1674 STY $24
1676 STA $25
1678 JMP S51CD ;Return to IQPLOP routine

; Handle execution of statement
167B CMP #$28 ;Was statement token less than 40?
167D BCS $1685
167F LDA #$16 ;Put address of execution routine - 1 on stack
1681 PHA ; (execution routine is at $1866)
1682 LDA #$87
1684 PHA
1685 JMP $4BA9

; STORE routine
1688 JSR $8803 ;Evaluate register number and value parameters
168B TXA ;Move value lo accumulator
168C LDY $17 ;High byte of register number should be zero
168E BNE $169D
1690 LDX $16 ;Low byte (in X) should be less than 37
1692 CPX #$25
1694 BCS $169D
1696 STY $FF00 ;Set for bank 15 so VDC chip is visible
1699 JSR $CDCC;Use screen editor routine
169C RTS
169D LDX #$0E ;Illegal quantity error if incorrect value supplied
169F JMP ($0300)

;RAD routine
16A2 CMP #$0C ;Was token less than 12?
16A4 BCS $16B4
16A6 JSR $7956 ;Check that parameter ended with a closing

parenthesis
16A9 LDA #$B5 ;Load value from $16B5 into FAC2

199

16AB
16AD
16B0
16B3
16B4
>16B5

LDY
JSR
JSR
CLC
RTS
7B OE

#$16
SAF5D
$AF21 ^Multiply by argument in FAC1

FA 35 12 ;Floating point value for TT/180

An alternate method of adding new statements to BASIC
involves creating intentional errors. To use this scheme, your
new keyword must consist of an existing keyword preceded
by a letter (or another keyword)—LLIST or COPYCHAR, for
example. A syntax error will occur when the new keyword is
encountered, but you can use the IERROR indirect vector
(768-769/$0300-$0301) to trap the error and process the key-
word. The advantage of this technique is that you don't have
to worry about tokenizing or detokenizing the new keyword.
The following example program illustrates the technique. It
supports a new statement, VPOKE, which performs like the
STORE statement in the example above. Use VPOKE register,
value to store a value in a VDC chip register. After a SYS 4864
to patch in this routine, VPOKE can be used in either program
or immediate mode, just like any other keyword.

;Redirect IERROR vector to $130B

;Was this a SYNTAX error?

;If §o, did it occur at a POKE token?

;Calculate pointer to character
; immediately before the POKE token
; (If the keyword uses a two-byte
; extended token, you must back up
; two positions instead of one.)

;Retrieve character before token
;Was it a V?
;If so, branch to handle VPOKE
;Process all other errors normally
;Move CHRGET pointer beyond token
.Evaluate parameters following VPOKE
;Move value parameter to accumulator
;Check that register parameter is
; less than 37

1300
1302
1305
1307
130A
130B
130D
130F
1311
1313
1315
1317
1319
131B
131D
131F
1322
1324
1326
1329
132C
132F
1330
1322

LDA
STA
LDA
STA
RTS
CPX
BNE
CMP
BNE
LDA
SBC
STA
LDA
SBC
STA
JSR
CMP
BEQ
JMP
JSR
JSR
TXA
LDY
BNE

#$0B
$0300
#$13
$0301

#$0B
$1326
#$97
$1326
$3D
#$01
$26
$3E
#$00
$27
$03C0
#$56
$1329
$4D3F
$0380
$8803

$17
$133A

200

$4006 16390

1334
1336
1338
133A
133C
133E
1341
1344

LDX
CPX
BCC
LDX
BNE
STY
JSR
JMP

$16
#$25
$133E
#$0E
$1326
$FFO0

(target register number in X)

;If register number is too large,
; exit with ILLEGAL QUANTITY error
;Configure for bank 15 (Y contains $00)

$CDCC;Use screen editor register setup routine
$AF90 ;Continue processing program text

The BASIC Jump Table
One new feature of BASIC 7.0 that will be very valuable to
machine language programmers is the jump table at
44800-44967/$AFOO-$AEA7. Many of the most useful BASIC
routines now have static entry points like those the Kernal
jump table provides for Kernal routines. Wherever possible,
you should use the jump table entry into the routine to main-
tain compatibility in the event that BASIC ROM is revised.

BASIC Entry Vectors
16384 $4000 JHARD-RESET
BASIC cold-start entry point; jumps to 16419/$4023, the ad-
dress of the routine which performs a complete initialization
of BASIC. This is the normal entry point following a system
reset.

16387 $4003 JSOFT_RESET
BASIC warm-start entry point; jumps to 16393/$4009, the ad-
dress of the routine which reinitializes BASIC and Kernal vec-
tors and screen editor vectors and variables. This is the normal
entry point during a RUN/STOP-RE STORE NMI interrupt.

16390 $4006 JBASIC-IR9
BASIC IRQ entry point; jumps to 43085/$A84D, the address
of the routine which handles the BASIC portion of the system
IRQ interrupt sequence. The target routine supports sprite
movement, sprite collision detection, light pen reading, and
the BASIC music statements. This is the normal entry point
during the system IRQ service routine.

201

16393 $4009 $43B0 17328

16393 $4009 SOFT-RESET
Performs a warm start of BASIC
This routine is the normal final step of the RUN/STOP-
RESTORE sequence. It resets the SID registers and sound loca-
tions, and calls the routine at 16781/$418D to stop sprite
movement. However, it does not reinitialize the BASIC vectors
or pointers.

16416 $4020 Unused
Three unused bytes filled with the value 255/$FR

HARD_RESET16419 $4023
Performs a cold start of BASIC
This routine is the normal final step of the reset sequence. It
performs a complete initialization of BASIC, including reset-
ting all vectors, pointers, and working storage locations to
their default values. This routine also includes a call to the
Kernal PHOENIX routine [$FF56], which will start any func-
tion ROMs that may be present, or boot a disk if one is in the
drive,

16453 $4045
Initializes BASIC painters and constants
This is the main initalization routine of the cold-start se-
quence. It is responsible for setting all RAM working storage
locations for BASIC to their default values.

16658 $4112
Initializes SID registers and sound routine locations
This routine sets all SID chip registers to 0/$00 and initializes
all locations associated with the SOUND and PLAY
statements.

16762 $417A
Initializes MMU preconfiguration registers

16781 $ 4 1 8 D
Initializes sprite speed and direction table
This routine copies a 0/$00 into the speed control byte for
each entry in the sprite movement table at 4478/$117E, effec-
tively halting all sprite motion.

16795 $419B
Displays the power-on message
This routine displays the text from the following area of ROM,
Note that the free memory figure is part of the ROM message,
and may not reflect the actual amount of memory available to
BASIC.

16827 $4IBB
Text for power-on message
{CLR}

COMMODORE BASIC V7.0 122365 BYTES FREE
(O1985 COMMODORE ELECTRONICS, LTD.

(O1977 MICROSOFT CORP.
ALL RIGHTS RESERVED

16977 $4251
Initializes BASIC indirect vectors
This routine copies the BASIC indirect vectors from the fol-
lowing table to locations 768-785/$0300-$0311, and initial-
izes the vector at 764-765/$02FC-$02FD.

16999 $4267
Table of default vector values
This area contains the default addresses copied into the page 3
indirect vectors by the routine at 16977/$4251.

17017 $4279
Text for character retrieval routines
This area contains the code for CHRGET and the other page 3
character retrieval subroutines. The routines are copied into
RAM.

17102 $42CE
Assorted character retrieval subroutines

17162 $430 A CRUNCH
Tokenizes keywords in lines of BASIC program text

17328 S43B0
Handles extended tokens

202 203

17356 $43CC

17356 $43CC
Deletes a character in the input buffer

17378 $43E2
Searches keyword tables for match

17431 $4417
BASIC keyword tables
The following table holds the BASIC 7.0 keywords in token
number order. Bit 7 of the last character of each keyword will
be set to %1 to indicate the end of the keyword.

$4609 17929

Token
128/S80
129/S81
130/$82
131/$83
132/$84
133/$85
134/$86
135/$87
136/$88
137/S89
138/$8A
139/S8B
140/S8C
141/$8D
142/$8E
143/$8F
144/$90
145/$91
146/$92
147/$93
148/$94
149/$95
150/$96
151/$97
152/$98
153/$99
154/$9A
155/$9B
156/S9C
157/$9D
158/S9E
159/S9F

Keyword
END
FOR
NEXT
DATA
INPUT#
INPUT
DIM
READ
LET
GOTO
RUN
IF
RESTORE
GOSUB
RETURN
REM
STOP
ON
WAIT
LOAD
SAVE
VERIFY
DEF
POKE
PRINT#
PRINT
CONT
LIST
CLR
CMD
SYS
OPEN

Token
160/$A0
161/$A1
162/$A2
163/$ A3
164/$A4
165/$A5
166/$A6
167/SA7
168/SA8
169/SA9
170/$AA
171/$AB
172/$ AC
173/$AD
174/JAE
175/$AF
176/$B0
177/SB1
178/$B2
179/$B3
180/$B4
181/$B5
182/$B6
183/$B7
184/$B8
185/SB9
186/$8A
187/$BB
188/SBC
189/$BD
190/$BE
191/$BF

Keyword
CLOSE
GET
NEW
TAB(
TO
FN
SPC(
THEN
NOT
STEP
+
-
*
/
t
AND
OR
>
—
<
SGN
INT
ABS
USR
FRE
POS
SQR
RND
LOG
EXP
COS
SIN

Token Keyword
192/$C0 TAN
193/$C1 ATN
194/$C2 PEEK
195/$C3 LEN
196/$C4 STR$
197/$C5 VAL
198/$C6 ASC
199/$C7 CHR$
200/$C8 LEFT$
201/$C9 RIGHT$
202/$CA MID$
203/$CB GO
204/$CC RGR
205/$CD RCLK
206/$CE function token extender
207/$CF JOY
208/$D0 RDOT
2O9/$D1 DEC
210/SD2 HEX$
211/$D3 ERR$
212/$D4 INSTR
213/$D5 ELSE
214/$D6 RESUME
215/$D7 TRAP
216/$D8 TRON
217/$D9 TROFF
218/$DA SOUND
219/$DB VOL
220/SDC AUTO
221/$DD PUDEF
222/SDE GRAPHIC
223/$DF PAINT

Token
224/$E0
225/$E1
226/$E2
227/$E3
228/$E4
229/$E5
230/$E6
231/$E7
232/$E8
233/$E9
234/$EA
235/$EB
236/$EC
237/$ED
238/$EE
239/$EF
240/$F0
241/$F1
242/$F2
243/$F3
244/$F4
245/$F5
246/$F6
247/$F7
248/$F8
249/$F9
250/$FA
251/$FB
252/$FC
253/$FD
254/$FE

Keyword
CHAR
BOX
CIRCLE
GSHAPE
SSHAPE
DRAW
LOCATE
COLOR
SCNCLR
SCALE
HELP
DO
LOOP
EXIT
DIRECTORY
DSAVE
DLOAD
HEADER
SCRATCH
COLLECT
COPY
RENAME
BACKUP
DELETE
RENUMBER
KEY
MONITOR
USING
UNTIL
WHILE
statement token extender

204

17929 $4609
Table of extended token statements
BASIC 7,0 has too many keywords to have a one-byte token
for each. Additional statements use a two-byte token where
the first byte is always 254/$FE. This table holds the extended
token statement keywords in order of the second byte of the
token, like the standard keywords, bit 7 of the last character
of each keyword will be set to % 1 .

205

18121 $46C9

Token
2/$02
3/$O3
4/$04
5/$05
6/$06
7/$07
8/$08
9/$09
10/SOA
11/$OB
12/$0C
13/$0D
14/$0E
15/SOF
16/$10
17/S11
18/$12
19/$13
20/$14

Keyword
BANK
FILTER
PLAY
TEMPO
MOVSPR
SPRITE
SPRCOLOR
RREG
ENVELOPE
SLEEP
CATALOG
DOPEN
APPEND
DCLOSE
BSAVE
BLOAD
RECORD
CON CAT
DVERIFY

Token
21/$15
22/$16
23/$17
24/$18
25/$19
26/$lA
27/S1B
28/$lC
29/$lD
3O/$1E
31/$1F
32/$20
33/$21
34/$22
35/$23
36/$24
37/$25
38/$26

Keyword
DCLEAR
SPRSAV
COLLISION
BEGIN
BEND
WINDOW
BOOT
WIDTH
SPRDEF
QUIT
STASH
(no keyword for this token)
FETCH
{no keyword for this token)
SWAP
OFF
FAST
SLOW

18121 $46C9
Table of extended token functions
BASIC 7.0 has too many keywords to have a one-byte token
for each. Additional functions use a two-byte token where the
first byte is always 206/$CE. This table holds the extended
token function keywords in order of the second byte of the
token. Like the standard keywords, bit 7 of the last character
of each entry is set to % 1 .
Token Keyword
2/$02 POT
3/$03 BUMP
4/$04 PEN
5/$05 RSPPOS
6/$06 RSPRITE
7/$07 RSPCOLOR
8/$08 XOR
9/$09 RWINDOW
10/$0A POINTER

18172 $46FC
Table of statement dispatch addresses
This area holds the address of the routines to execute tokens
128-162/$80-$A2. Because of the way statement execution is

206

$4828 18472

handled, the values here are actually one less than the address
of the target routine. See Appendix F for a list of keyword exe-
cution addresses.

18242 $4742
Table of statement dispatch addresses
This area holds the address of the routines to execute tokens
213-250/$D5-$FA. Because of the way statement execution is
handled, the values here are actually one less than the address
of the target routine. See Appendix F for a list of keyword exe-
cution addresses.

18172 $46FC
Table of statement dispatch addresses
This area holds the address of the routines to execute ex-
tended statement tokens 2-38/$02-$26. Because of the way
statement execution is handled, the values here are actually
one less than the address of the target routine. See Appendix
F for a list of keyword execution addresses.

18317 $478D
Table of function dispatch addresses
This area holds the address of the routines to execute tokens
180-211/$B4-$D3. See Appendix F for a list of keyword exe-
cution addresses.

18454 $4816
Table of function dispatch addresses
This area holds the address of the routines to execute ex-
tended function tokens 2-10/$02-$0A. See Appendix F for a
list of keyword execution addresses.

18472 $4828
Table of operator priorities and dispatch addresses
Each mathematical operator such as + ,—,*, and / has a
three-byte entry in this table. The first byte is the priority of
the operator for expression evaluation and the next two are
the address of the routine to perform the specified operation.

207

18502 $4846

18502 $4846
Prints unimplemented command message
BASIC 7.0 contains two unused keywords, QUIT and OFF.
Either of those will use this routine to print the UNIMPLE-
MENTED COMMAND error message.

18507 $484B
Table of BASIC error messages
This area holds text for the BASIC error messages in error
number order. Bit 7 in the last character of each message will
be set to %1 to mark the end of the message.

Error number
1/S01
2/$02
3/$03
4/$04
5/$05
6/$06
7/$07
8/$08
9/$09
10/$0A
11/$OB
12/$0C
13/$0D
14/$0E
15/$0F
16/flO
17/S11
18/$12
19/$13
20/$14
21/$15
22/$16
23/$17
24/$18
25/$19
26/$lA
27/$lB
28/$lC
29/$lD
30/$ IE
31/$1F

Error message
TOO MANY FILES
FILE OPEN
RLE NOT OPEN
FILE NOT FOUND
DEVICE NOT PRESENT
NOT INPUT RLE
NOT OUTPUT FILE
MISSING FILE NAME
ILLEGAL DEVICE NUMBER
NEXT WITHOUT FOR
SYNTAX
RETURN WITHOUT GOSUB
OUT OF DATA
ILLEGAL QUANTITY
OVERFLOW
OUT OF MEMORY
UNDEF'D STATEMENT
BAD SUBSCRIPT
REDIM'D ARRAY
DIVISION BY ZERO
ILLEGAL DIRECT
TYPE MISMATCH
STRING TOO LONG
FILE DATA
FORMULA TOO COMPLEX
CANT CONTINUE
UNDEF'D FUNCTION
VERIFY
LOAD
BREAK
CANT RESUME

$4C83 19587

Error number
32/$20
33/$21
34/$22
35/$23
36/$24
37/$25
38/$26
39/$27
40/$28
41/$29

Error message
LOOP NOT FOUND
LOOP WITHOUT DO
DIRECT MODE ONLY
NO GRAPHICS AREA
BAD DISK
BEND NOT FOUND
LINE NUMBER TOO LARGE
UNRESOLVED REFERENCE
UNIMPLEMENTED COMMAND
FILE READ

19074 S4A82
Sets pointer to error message
Sets locations 38-39/$26-$27 to point to the error number
specified in the accmulator upon entry.

19103 $4A9F GONE
Main BASIC statement execution routine
This routine handles COLLISION processing, then falls
through into the next routine to execute the current BASIC
statement.

19190 $4AF6
Executes the next BASIC statement

NEWSTT

19381 $4BB5
Tests for RUN/STOP keypress
This routine tests whether the RUN/STOP key is being
pressed. If so, a branch will be taken into the following
routine.

19403 $4BCB STOP/END
Handles the STOP and END statements

19447 $4BF7
Handles the execution of function keywords

19587 S4C83
Displays the SYNTAX ERROR message

208 209

19590 $4C86 $528F 21135

19590 $4C86
Handles the OR logical operator

19593 $4C89
Handles the AND logical operator

19638 $4CB6
Handles relational operators (<, =, >)

19754 $4D2A
Prints the READY prompt

OR

AND

READY19767 $4D37
Enters MAIN with a READY prompt
This routine is the normal path back to immediate mode after
a program or previous immediate mode line has been exe-
cuted. It prints the READY prompt and falls through into the
MAIN routine.

19770 $4D3A
Displays an OUT OF MEMORY error message

19772 $4D3C ERROR
Handles BASIC errors

19836 $4D7C
Prints a specified error message

19895 $4DB7 MAIN
Handles immediate mode and program line entry

19938 $4DE2
Adds or deletes BASIC program lines

20303 $4F4F LNKPRG
Relinks BASIC program lines

20371 $4F93
Reads a line of input into the buffer

20394 $4FAA
Searches for a particular token in the runtime stack

210

20478 $4FFE
Decrements the runtime stack pointer

20503 $5017
Checks foT available string space
This routine tests whether there is sufficient space in the string
pool before a string is added. If no space is available, garbage
collection is attempted.

20569 $5059
Increments runtime stack pointer

20580 $5064 FNDLIN
Searches program text for a specified line number

20640 $50AO LINGET
Creates integer value from a character string
This routine converts a string of characters at the current
text pointer address into a two-byte integer value in locations
22-23/$16-$17.

20706 $50E2 LIST
Handles the LIST statement

20771 $5123
Lists a single BASIC program line

20950 $51D6 NEW
Handles the NEW statement

20984 S51F8 CLR
Handles the CLR statement

21076 $5254
Resets the CHRGET text pointer
This routine resets the CHRGET text pointer, locations 61-62/
$3D-$3E, to the beginning of the BASIC text area.

21090 $5262
Handles the RETURN statement

RETURN

21135 $528F BEND/DATA
Handles the BEND and DATA statements

211

21149 $529D $5A3D 23101

21149 $529D
Handles the REM statement

21189 $52C5
Handles the IF statement

21280 $5320
Skips a BEGIN-BEND block

21393 $5391
Handles the ELSE statement

21411 $53A3
Handles the ON statement

REM

IF

ELSE

ON

21446 $53C6 LET
Handles variable value assignments
This routine evaluates the expression on the right of a rela-
tional operator and assigns the resulting value to the variable
on the left.

21818 $553A PRINT*
Handles the PRINT* statement

21824 $5540 CMD
Handles the CMD statement

21844 $5554 PRINT
Handles the PRINT statement

22034 $5612 GET
Handles the GET statement (also GET# and GETKEY)

22088 $5648
Handles the INPUT* statement

22114 $5662
Handles the INPUT statement

22185 $56A9
Handles the READ statement

INPUT*

INPUT

READ

22474 $57CA
Moves the CHRGET text pointer to the next DATA statement
212

22516 $57F4
Handles the NEXT statement

22648 $5878
Handles the DIM statement

22661 $5885
Handles the SYS statement

NEXT

DIM

SYS

22708 $58B4 TRON/TROFF
Handles the TRON and TROFF statements

22717 S58BD
Handles the RREC statement

RREG

22785 $5901 MID$
Handles MID$ when used as a statement

22901 $5975
Handles the AUTO statement

22918 $5986
Handles the HELP statement

AUTO

HELP

22956 $59AC
Highlights the portion of a listed line containing an error

22991 $59CF
Handles the GOSUB statement

23003 $59DB
Handles the GOTO statement

GOSUB

GOTO

23069 $5A1D
Places RETURN parameters in the runtime stack

GO23101 $5A3D
Handles the GO statement
Begins by testing whether the GO token is followed by the
token for TO, indicating that GOTO was entered as GO TO.
The acceptance of GO TO as a synonym for GOTO is unique
to Commodore.

213

23136 S5A60

23136 $SA60 CONT
Handles the CONT statement

23169 $5A31
Sets flags for running a program

23195 S5A9B RUN
Handles the RUN statement

23242 $5ACA RESTORE
Handles the RESTORE statement

23280 S5AF0
Table of tokens for RENUMBER

23288 S5AF8 RENUMBER
Handles the RENUMBER statement

24057 $5DF9 FOR
Handles the FOR statement

24199 $5E87 DELETE
Handles the DELETE statement

24372 $5F34 PUDEF
Handles the PUDEF statement

24397 $5F4D TRAP
Handles the TRAP statement

24418 $5F62 RESUME
Handles the RESUME statement

24544 $5FE0 DO
Handles the DO statement

24633 $6039 EXIT
Handles the EXIT statement

24714 $608A LOOP
Handles the LOOP statement

24801 $6OE1
Assigns a definition string to a programmable key

214

$6A4C 27212

24842 $610 A
Handles the KEY statement

24989 $619D
Table of characters for KEY

25000 $61A8
Handles the PAINT statement

25271 $62B7
Handles the BOX statement

25643 $642B
Handles the SSHAPE statement

25997 $658D
Handles the GSHAPE statement

26254 $668E
Handles the CIRCLE statement

KEY

PAINT

BOX

SSHAPE

GSHAPE

CIRCLE

26448 $6750 CIRSUB
Bitmapped graphics circle-drawing subroutine

26519 $6797
Handles the DRAW statement

26583 $67D7
Handles the CHAR statement

26965 $6955
Handles the LOCATE statement

26976 $6960
Handles the SCALE statement

27096 $69DS
Table of scaling factors

27106 $69E2
Handles the COLOR statement

DRAW

CHAR

LOCATE

SCALE

COLOR

27212 $6A4C
Table for translating VIC color values to VDC color values

215

27228 $6A5C

27228 S6A5C
Calculates color fill values

27257 $6A79 SCNCLR
Handles the SCNCLR statement

27482 $6B5A GRAPHIC
Handles the GRAPHIC statement

27593 $6BC9 BANK
Handles the BANK statement

27607 $6BD7 SLEEP
Handles the SLEEP statement

27693 $6C2D WAIT
Handles the WAIT statement

27727 $6C4F SPRITE
Handles the SPRITE statement

27846 $6CC6 MOVSPR
Handles the MOVSPR statement

28129 $6DE1 PLAY
Handles the PLAY statement
This routine has many suboutines to handle parsing and exe-
cution of the strings of music data. PLAY is actually a mini-
language within BASIC.

28631 $6FD7 TEMPO
Handles the TEMPO statement

28644 S6FE4
Data tables for PLAY string processing

28689 $7011
Default values for ENVELOPE instrument tables

28742 $7046
Handles the FILTER statement

28865 $7OC1
Handles the ENVELOPE statement
216

FILTER

ENVELOPE

$77D7

29028 $7164 COLLISION
Handles the COLLISION statement
This routine sets up the conditions for COLLISION checking.
The actual testing for collisions occurs during the BASIC IRQ
routine [$A84D].

29072 $7190 SPRCOLOR
Handles the SPRCOLOR statement

29110 $71B6
Handles the WIDTH statement

29125 $71C5
Handles the VOL statement

29164 $71EC
Handles the SOUND statement

29388 $72CC
Handles the WINDOW statement

WIDTH

VOL

SOUND

WINDOW

BOOT29493 $7335
Handles the BOOT statement
If a filename is provided, the routine does the equivalent of
BLOAD followed by SYS, rather than actually attempting to
boot a disk.

SPRDEF29554 $7372
Handles the SPRDEF statement

^ P ^ V 6 3 1 1 7 a : ! t a t e m e n t ; j t ' s a b ^ - i n machine lan-guage sprite-design utility program.

30444 $76EC
Handles the SFRSAV statement

30643 $77B3
Handles the FAST statement

30660 $77C4
Handles the SLOW statement

SPRSAV

FAST

SLOW

30679 $77D7
Evaluates an expression with a test for type mismatch

217

30703 $77EF $837C 33660

30703 $77EF
Evaluates an expression

FRMEVL 32842
Handles the

30935 $78D7 EVAL
Evaluates a single term of a numeric expression

31084 $796C
Displays a SYNTAX ERROR message

31096 $7978
Evaluates a variable value
This routine is also responsible for processing all the BASIC
reserved variables: TI, TI$, ST, DS, DS$, ER, and EL.

31407 $7AAF
Finds or creates a variable
This routine searches the variable table in bank 1 for a speci-
fied variable, and creates the variable if it does not already
exist.

31632 $7B90
Creates an entry in the variable table for a new scalar variable

31846 $7C66
Moves arrays upward in bank 1 to make room for a new scalar
variable

31915 $7CAB
Finds or creates an array variable

32386-32767 $7E82-$7FFF
This unused area of BASIC ROM is filled with the value
255/$FE

32768 $8000
Handles the FRE function

FRE

32800 $8020
Prints designers' message
When you use the statement SYS 32800,123,45,6, you'll get a
rather political message from the designers of the 128.

218

32886
Handles the

32965
Handles the

32997
Handles the

33014
Handles the

33090
Handles the

33154
Handles the

33179
Handles the

33283
Handles the

33357
Handles the

33454
Handles the

33530
Handles the

33566
Handles the

33633
Handles the

33660
Handles the

$804A
VAL function

$8076
DEC function

$80C5
PEEK function

$80E5
POKE statement

$80F6
ERR$ function

$8142
HEX$ function

$8182
RGR function

$819B
RCLR function

$8203
JOY function

$ 8 2 4 D
POT function

$82AE
PEN function

$82FA
POINTER function

$83 IE
RSPRITE function

$8361
RSPCOLOR function

$837C
BUMP function

VAL

DEC

PEEK

POKE

ERR$

HEX$

RGR

RCLR

JOY

POT

PEN

POINTER

RSPRITE

RSPCOLOR

BUMP

219

33687 $8397 $880F 34831

33687 $8397
Handles the RSPFOS function

33761 $83E1
Handles the XOR function

33799 $8407
Handles the RWINDOW function

33844 $8434
Handles the RND function

RSPPOS

XOR

RWINDOW

RND

33936 $8490
Table of floating-point constants for RND calculation

34000 $84D0 POS
Handles the POS function

34009 $84D9
Checks that BASIC is in run mode

34032 $84F0
Checks that BASIC is in immediate mode

34042 $84FA
Handles the DEF statement

DEF

34107 S853B FN
Handles user-defined functions using FN

34222 $85AE
Handles the STR$ function

34239 $85BF
Handles the CHR$ function

34262 $85D6
Handles the LEFT$ function

34314 $860A
Handles the RIGHTS function

34332 $861C
Handles the MID$ function
220

STR$

CHR$

LEFT$

RIGHT$

MIDS

34408 $8668
Handles the LEN function

34423 $8677
Handles the ASC function

LEN

ASC

34437 $8685
Displays the ILLEGAL QUANTITY error message

34440 $8688
Creates space for a string in the string pool

34458 $869A
Stores a string in the string pool

34573 $870D
Performs string concatenation

34683 $877B
Evaluates a string parameter
This routine returns with locations 36-37/$24-25 set to point
to the string and the Y register holding the length of the
string.

34801 $87F1
Evaluates a numeric expression
This routine evaluates a numeric parameter and checks that it
is in the range 0-255/$00-$FF. If the parameter is valid, it
will be returned in the X register.

34819 $8803
Evaluates parameters for POKE or WAIT
This routine retrieves a pair of parameters: The first, a value in
the range 0-65535/$0000-$FFFF, will be returned in locations
22-23/$16-$17, and the second, a value in the range 0-255/
$OO-$FF, will be returned in the X register.

34831 S880F
Checks that the next character is a comma

.
221

34837 $8815

34837 $8815
Evaluates a numeric parameter
This routine retrieves a numeric parameter, checking that it is
in the range 0-65535/$0000-$FFFF. If the value is valid, it
will be returned in locations 22-23/$16-$17.

34862 SS82E
Subtracts value in memory from FAC1
Loads FAC2 with the five-byte floating-point value pointed to
by the accumulator and Y register (low byte/high byte), then
subtracts the value in FAC2 from the one in FAC1, leaving the
results in FAC1.

34865 $8831
Subtracts FAC1 from FAC2
Subtracts the value in FAC2 from the one in FAC1, leaving
the results in FAC1.

34885 $8845
Adds value in memory to FAC1
Loads FAC2 with the five-byte floating-point value pointed to
by the accumulator and Y register (low byte/high byte), then
adds the value in FAC2 to the one in FAC1, leaving the re-
sults in FAC1.

34888 $8848
Adds FAC1 to FAC2
Adds the value in FAC2 to the one in FAC1, leaving the re-
sults in FAC1.

34993
Normalizes FAC1

S 8 8 B 1

35110 $8926
Forms twos complement of FAC1

35165 $895D
Displays OVERFLOW error message

35170 $8962
Performs byte alignment of FAC1

222

$8B49 35657

35274 S89CA
Handles the LOG function

LOG

35342
Adds 0.5 to FAC1

$8A0E

35364 $8A24
Multiplies value in memory by FAC1
Loads FAC2 with the five-byte floating-point value pointed to
by the accumulator and Y register (low byte/high byte), then
multiplies the value in FAC2 by the one in FAC1, leaving the
results in FAC1.

35367 $8A27
Multiplies value in memory by FAC1
Loads FAC2 with the five-byte floating-point value pointed to
by the accumulator and Y register (low byte/high byte), then
multiplies the value in FAC2 by the one in FAC1, leaving the
results in FAC1.

35465 $8A89
Loads FAC2 with value from the current bank
Loads FAC2 with the five-byte floating-point value pointed to
by the accumulator and Y register (low byte/high byte).

35508 $8AB4
Loads FAC2 with value from bank 1
Loads FAC2 with the five-byte floating-point value in bank 1
pointed to by the accumulator and Y register (low byte/high
byte),

35607 $8B17
Multiplies FAC1 by 10

35640 $8B38
Divides FAC1 by 10

35657 $8B49
Divides value in memory by FAC1
Loads FAC2 with the five-byte floating-point value pointed to
by the accumulator and Y register (low byte/high byte), then
divides the value in FAC2 by the one in FAC1, leaving the re-
sults in FAC1. 223

35660 S8B4C

35660 $8B4C
Divides FAC2 by FAC1
Divides the value in FAC2 by the one in FAC1, leaving the re-
sults in FAC1.

35796 $8BD4
Loads FAC1 from memory
Loads FAC1 with the five-byte floating-point value pointed to
by the accumulator and Y register (low byte/high byte).

35840 $8C00
Copies FAC1 value into memory
Stores the value in FAC1 in five bytes pointed to by the X and
Y registers (low byte/high byte).

35880 $8C28
Copies FAC2 into FAC1

35896 $8C38
Copies FAC1 into FAC2

35911
Rounds FAC1

$8C47

35927 $8C57
Determines the sign of the value in FAC1

35941 $8C65 SGN
Handles the SGN function

35972 $8C84 ABS
Handles the ABS function

35975 $8C87
Compares FAC1 against FAC2

36039 $8CC7
Converts FAC1 to a four-byte integer

36091 $8CFB INT
Handles the INT function

224

$9086 36998

36120 $8D18
Fills FAC1 with the value in the accumulator

36130 $8D22
Generates floating-point value representing character string
This routine reads a character string from BASIC program text
and generates the equivalent floating-point value in FAC1.

36390 $8E26
Prints IN and a line number

36398 $8E2E
Prints a line number
This routine generates a string based on the value in
59-60/$3B-$3C, then prints the results,

36418 $8E42
Generates a character string representing the value in FAC1
This routine generates a string of characters in the work area
at 256/$0100 representing the value in FACL

36791 $8PB7 SQR
Handles the SQR function
This routine calculates the square root of the value in FAC1,
taking advantage of the fact that SQR(X) = X t 0.5.

36801 $8FC1
Handles the exponentiation (T) operator
This routine raises the value in FAC1 to the power specified in
FAC2. This routine takes advantage of the fact that At B =
EXP(LOG(A) * B).

36869 $9005
Table of floating-point constants for EXP evaluation

36915 $9033
Handles the EXP function

36998 $9086
Performs series evaluation

EXP

225

37080 S90D8 $9520 38176

37080 $90D8
Calls the Kernal OPEN routine

37087 $90DF
Calls the Kernal BSOUT routine

37093 S90E5
Calls the Kernal BASIN routine

37117 $90FD
Calls the Kernal CHKIN routine

37129 $9109
Calls the Kernal GETIN routine

37138 $9112
Handles the SAVE statement

37161 $9129
Handles the VERIFY statement

37164 $912C
Handles the LOAD statement

37261 $918D
Handles the OPEN statement

37274 $919A
Handles the CLOSE statement

SAVE

VERIFY

LOAD

OPEN

CLOSE

37294 $91AE
Evaluates parameters for SAVE, LOAD, and VERIFY

37366 $91F6
Evaluates parameters for OPEN and CLOSE

37433 9243
Clears DS$ after disk operations

37457 $9251
BASIC calls to Kernal routines
The subroutines in this area are BASIC'S formal calls to Kernal
routines:

226

37457/$9251 READSS
37463/$9257 SETLFS
37469/$925D SETNAM
37475/$9263 BASIN
37481/$9269 BSOUT
37487/$926F CLRCH
37493/$9275 CLOSE
37499/$927B CLALL
37505/$9281 PRIMM
37511/19287 SETBANK
37517/$928D PLOT
37523/$9293 STOP

37529 $9299
Creates space in the string pool for a temporary string

37610 $92EA GARBA2
Performs garbage collection on string pool

37897 $9409
Handles the COS function

COS

This routine takes advantage of the fact that COS(X) = SIN (X
+ Ti/2).

37904 $9410
Handles the SIN function

37977 $9459
Handles the TAN function

SIN

TAN

This routine takes advantage of the fact that TAN(X) = SIN(X)
/ COS(X).

38021 $9485
Table of constants for trig function evaluation

38067 $94B3
Handles the ATN function

ATN

38115 $94E3
Table of constants for trig function evaluation

38176 $9520 PRINT USING
Handles the PRINT USING statement

227

39361 $99C1

39361 $99C1
Handles the INSTR function

39692 $9B0C
Handles the RDOT function

INSTR

RDOT

39728 $9B30 DRAWLN
Bitmapped graphics line-drawing routine

39931 $9BFB
Bitmapped point-plotting routine

40010 $9C4A
Scales graphics parameters

40366 $9DAE
Applies scaling factor to a specified parameter

40557 $9E6D
Evaluates graphics parameters

40712 $9F08
Handles relative graphics parameters

40783 $9F4F
Allocates the bitmapped graphics area

40903 $9FC7
Adjusts BASIC program pointers for graphics area allocation or
de-allocation

40994 $A022
De-allocates the bitmapped graphics area

41076 SA074
Confirms that the graphics area has been allocated

41086 $A07E CATALOG/DIRECTORY
Handles the CATALOG and DIRECTORY statements

41245 SA11D
Handles the DOPEN statement

DOPEN

228

$A346 41798

41268 $A134 APPEND
Handles the APPEND statement

41303 SA157
Finds an available secondary address

41327 $A16F DCLOSE
Handles the DCLOSE statement

41347 SA183
Closes all open files for a specified device

41356 $A18C DSAVE
Handles the DSAVE statement

41380 $A1A4 DVERIFY
Handles the DVERIFY statement

41383 $A1A7 DLOAD
Handles the DLOAD statement

41416 $A1C8 BSAVE
Handles the BSAVE statement

41496 $A218 BLOAD
Handles the BLOAD statement

41575 $A267 HEADER
Handles the HEADER statement

41633 $A2A1 SCRATCH
Handles the SCRATCH statement

41687 $A2D7 RECORD
Handles the RECORD statement

41762 $A322 DCLEAR
Handles the DCLEAR statement

41775 $A32F COLLECT
Handles the COLLECT statement

41798 $A346 COPY
Handles the COPY statement

229

41826 SA362

41826 $A362 CONCAT
Handles the CONCAT statement

41838 $A36E RENAME
Handles the RENAME statement

41852 $A37C BACKUP
Handles the BACKUP statement

41923 $A3C3
Evaluates parameters for disk commands

42535 SA627
Table of disk command templates

42599 SA667
Sets up disk command buffer

42872 $A778
Reads disk status string (DSS)

42977 $A7E1
Provides ARE YOU SURE query

43021 SA80D
Clears disk status string

43077 $A845
Switches to bank 15 configuration

43085 $A84D
BASIC IRQ service routine
This routine supports the MOVSPR sprite movement state-
ment, the COLLISION statement, and the PEN function. It is
also responsible for updating the duration timers for the
SOUND and PLAY statements,

43504 $A9F0
Common exit point from BASIC IRQ routine

43551 $AA1F
Handles the STASH statement

STASH

230

$AF03 44803

43556 SAA24
Handles the FETCH statement

43561 SAA29
Handles the SWAP statement

FETCH

SWAP

43630-44642 $AA6E-SAE62 Unused
All locations in this unused area of ROM are filled with the
value 255/lFF.

44643-44799 $AE63-$AEFF
This area contains a heavily encoded message from the de-
signers of the 128.

BASIC Jump Table
The Commodore 128's BASIC 7.0 includes a feature not found
in previous versions: a jump table. Like the Kernal and screen
editor jump tables, the BASIC table provides stable entry
points to a number of important BASIC routines. If you want
to call a BASIC routine from within one of your own machine
language programs, you should use the jump table entry if
one is provided. If you call a BASIC ROM routine directly,
your program will not work if the address of the routine is
changed in a future version. Presumably, Commodore will up-
date the jump table if BASIC ROM is ever revised, so that
jump table calls will remain valid.

In the discussions below, FAC1 refers to floating-point ac-
cumulator #1, locations 99-103/$63-$67, and FAC2 refers to
floating-point accumulator #2, locations 106-110/$6A-$6E.

44800 $AF00 JAYINT
Entry point for the AYINT routine, currently at 33972/$84B4.
This routine converts the contents of FAC1 into a two-byte
signed integer value in locations 102-103/$66-$67 (high byte
in 102/$66, low byte in 103/$67). The routine tests the origi-
nal value and generates an ILLEGAL QUANTITY error mes-
sage if it is not in the range -32768-32767.

44803 $AF03 JGIVAYF
Entry point for the GIVAYF routine, currently at 31036/
$793C. This routine converts the two-byte signed integer

231

44806 $AF06

value in the Y register and accumulator (low byte in Y, high
byte in the accumulator) into a floating-point value in FAC1.

44806 $AF06 JFOUT
Entry point for the FOUT routine, currently at 36418/$8E42.
This routine creates a string of characters representing the
floating-point value in FAC1. The string starts at location
253/$0100 and is terminated with a zero byte. The first char-
acter of the string is a space (code 32/$20) if the value was
positive, or a minus sign (—) if the value was negative.

44809 $AF09 JVAL_1
Entry point for the VAL_1 routine, currently at 32850/$8052.
This routine reads a string of characters from bank 1 and gen-
erates the equivalent floating-point value in FAC1. Locations
36-37/$24-$25 point to the the starting address of the string
and the accumulator holds the length of the string. This rou-
tine will leave the system in BASIC'S alternate bank 14 con-
figuration in which block 1 RAM is visible, so it shouldn't be
called by a routine in bank 0.

44812 $ AFOC JGETADR
Entry point for the GETADR routine, currently at 34837/
$8815. This routine converts the current value in FAC1 into a
two-byte unsigned integer in locations 22-23/$16-$17 (low
byte in 22/$ 16, high byte in 23/$17). The integer value will
also be in the Y register (low byte) and accumulator (high
byte) upon return. Before performing the conversion, the rou-
tine checks that the value FAC1 is in the range 0-65535, and
generates an ILLEGAL QUANTITY error message if it is not.

44815 $AF0F JFLOATC
Entry point for the FLOATC routine, currently at 35957/
$8C75. This routine converts the two-byte unsigned integer in
locations 100-101/$64-$65 (low byte in 101/$65, high byte
in 100/$64) into a floating-point value in FAC1. For this rou-
tine to function properly, you must also load the X register
with the value 144/$90 and make sure the status register
carry bit is set.

$AF21 44833

44818 $AF12 JFSUB
Entry point for the FSUB routine, currently at 34862/S882E.
This routine subtracts the floating-point value in FAC1 from
the five-byte floating-point value from the address in bank 1
specified in the accumulator (low byte) and Y register (high
byte). (The bank 1 value will be loaded into FAC2.) The result
will be left in FAC1.

44821 $AF15 JFSUBT
Entry point for the FSUBT routine, currently at 34865/$8831.
This routine subtracts the value in FAC1 from the value in
FAC2. The result will be left in FAC1.

44824 $AF18 JFADD
Entry point for the FADD routine, currently at 34885/S8845.
This routine adds the floating-point value in FAC1 to the five-
byte floating-point value from the address in bank 1 specified
in the accumulator {low byte) and Y register (high byte). (The
bank 1 value will be loaded into FAC2.) The result will be left
in FAC1.

44827 $AF1B JFADDT
Entry point for the FADDT routine, currently at 34888/$8848.
This routine adds the value in FAC1 to the value in FAC2.
The result will be left in FAC1,

44830 $AF1E JFMULT
Entry point for the FMULT routine, currently at 35364/$8A24.
This routine multiplies the floating-point value in FAC1 by the
five-byte floating-point value from the address in bank 1 spec-
ified in the accumulator (low byte) and Y register (high byte),
(The bank 1 value will be loaded into FAC2.) The result will
be left in FAC1.

44833 $AF21 JFMULTT
Entry point for the FMULTT routine, currently at 35367/
$8A27. This routine multiplies the value in FAC1 by the value
in FAC2. The result will be left in FAC1.

232 233

44836 $AF24

44836 $AF24 FDIV
Entry point for the FDIV routine, currently at 35657/$8B49.
This routine divides the five-byte floating-point value from the
address in bank 1 specified in the accumulator (low byte) and
Y register (high byte) by the floating-point value in FAC1.
(The bank 1 value will be loaded into FAC2.) The result will
be left in FAC1.

44839 $AF27 JFDIVT
Entry point for the FDIVT routine, currently at 35660/$8B4C.
This routine divides the value in FAC2 by the value in FAC1.
The result will be left in FAC1.

44842 $AF2A JLOG
Entry point for the LOG routine, currently at 35274/$89CA.
This routine calculates the natural logarithm of the value cur-
rently in FAC1, the log to the base e. The result will be left in
FAC1.

44845 $AF2D JINT
Entry point for the INT routine, currently at 36091/$8CFB.
This routine calculates the whole number portion of the cur-
rent value of FAC1, removing any fractional portion. The frac-
tional portion is simply truncated; no rounding is performed.
The result is a floating-point value in FAC1, not an integer
value.

44848 $AF30 J S Q R
Entry point for the SQR routine, currently at 36791/S8FB7.
This routine calculates the square root of the current value in
FAC1. The result will be left in FAC1.

44851 $AF33 J N E G O P
Entry point for the NEGOP routine, currently at 36858/
$8FFA. This routine switches the sign of the current value in
FAC1, making the value negative if it was positive, or positive
if it was negative.

44854 $AF36 JFPWR
Entry point for the FPWR routine, currently at 36798/$8FBE.
This routine raises the value in FAC2 to the power specified in

234

$AF48 44872

the five-byte floating-point value from bank 1 beginning at the
address specified in the accumulator and Y register (low byte
in the accumulator, high byte in the Y register). The exponent
value will be loaded into FAC1. The result of the operation
will be left in FAC1.

44857 $AF39 JFPWRT
Entry point for the FPWRT routine, currently at 368O1/$8FC1.
This routine raises the value in FAC2 to the power specified in
FAC1, effectively FAC2 t FAC1. The result of the operation
will be left in FAC1.

44860 $AF3C JEXP
Entry point for the EXP routine, currently at 36915/$9033.
This routine calculates the natural exponential of the value in
FAC1, effectively e T FAC1, where e = 2.71828. This is the in-
verse of the LOG operation. The result will be left in FAC1.

$AF3F JCOS44863
Entry point for the COS routine, currently at 37897/$9409.
This routine calculates the cosine of the current value in
FAC1, which will be interpreted as an angle in radians. The
result will be left in FAC1.

$AF42 JSIN44866
Entry point for the SIN routine, currently at 37904/$9410.
This routine calculates the sine of the current value in FAC1,
which will be interpreted as an angle in radians. The result
will be left in FAC1.

44869 $AF45 JTAN
Entry point for the TAN routine, currently at 37977/$9459.
This routine calculates the tangent of the current value in
FAC1, which will be interpreted as an angle in radians. The
result will be left in FAC1.

44872 $AF48 JATN
Entry point for the ATN routine, currently at 38067/$94B3.
This routine calculates the inverse tangent (arctangent) of the
current value in FAC1. The result, which can be interpreted as
an angle in radians, will be left in FAC1.

235

44875 $AF4B

4487S $AF4B JROUND
Entry point for the ROUND routine, currently at 35911/
$8C47. This routine will round the least significant bit of
FAC1 according to the value in the FAC1 rounding byte, loca-
tion 113/S71.

44878 $AF4E JABS
Entry point for the ABS routine, currently at 35972/$8C84.
This routine will calculate the absolute value of the current
value in FAC1, making the value positive regardless of its pre-
vious sign.

44881 SAF51 JSIGN
Entry point for the SIGN routine, currently at 35927/$8C57.
This routine sets the accumulator (and processor status regis-
ter) according to the current value in FAC1. If the value is
zero, the accumulator will hold 0/$00 upon return (and the
status register Z bit will be set). If the FAC1 value is positive,
the accumulator will hold l/$01 (and the status register Z and
N bits will both be clear). If the FAC1 value is negative, the
accumulator will hold 255/$FF (and the status register N bit
will be set).

44884 $AF54 JFCOMP
Entry point for the FCOMP routine, currently at 35975/
$8C87, This routine compares the floating-point value in
FAC1 against the five-byte floating-point value from the ad-
dress in bank 1 specified in the accumulator (low byte) and Y
register (high byte). The accumulator (and processor status
register) will be set according to the result of the comparison.
If the two values are equal, the accumulator will hold 0/$00
upon return (and the status register Z bit will be set). If the
FAC1 value is greater than the value in bank 1, the accumu-
lator will hold l/$01 (and the status register Z and N bits will
both be clear). If the FAC1 value is less than the value in bank
1, the accumulator will hold 255/$FF (and the status register
N bit will be set).

44887 $AF57 JRND-0
Entry point for the RND_0 routine, currently at 33857/$8437.
This routine generates a pseudorandom floating-point value

236

$AF69 44905

according to the setting of the status register N and Z bits
upon entry. The resulting value will be left in FAC1. If the N
bit is set upon entry, the value in FAC1 will be used as the
seed, producing a predictable result. If the Z bit is set, the
value in the CIA. #1 time-of-day clock is used as a seed. Other-
wise, the previous random number in locations 4635-4639/
$121B-$121F is used as a seed for the next value.

44890 $AF5A JCONUPK
Entry point for the CONUPK routine, currently at 35508/
$8AB4. This routine loads FAC2 with the five-byte value at
the address in bank 1 pointed to by the accumulator and Y
register (low byte/high byte).

44893 $AF5D JROMUPK
Entry point for the ROMUPK routine, currently at 35465/
$8A89. This routine loads FAC2 with the five-byte value at
the address in the current bank pointed to by the accumulator
and Y register (low byte/high byte).

44896 $AF60 JMOVFRM
Entry point for the MOVFRM routine, currently at 31365/
$7A85. This routine loads FAC2 with the five-byte value at
the address pointed to by locations 36-37/$24-$25.

44899 $AF63 JMOVFM
Entry point for the MOVFM routine, currently at 35796/
$8BD4. This routine loads FAC1 with the five-byte value at
the address in the current bank pointed to by the accumulator
and Y register (low byte/high byte).

44902 $AF66 JMOVMF
Entry point for the MOVMF routine, currently at 35840/
$8C00. This routine copies the contents of FAC1 into a five-
byte area beginning at the address in the current bank pointed
to by the X and Y registers (low byte/high byte).

44905 $AF69 JMOVFA
Entry point for the MOVFA routine, currently at 35880/
$8C28. This routine copies the contents of FAC2 into FAC1.

44908 $AF6C

44908 $AF6C JMOVAF
Entry point for the MOVAF routine, currently at 35896/
$8C38. This routine copies the contents of FAC1 into FAC2.

4 4 9 1 1 $ A F 6 F JOPTAB
This table entry is not a jump vector. Location 44911/$AF6F
does contain a JMP instruction, but the target address is not a
valid routine. Instead, locations 44912-44913/$AF70-$AF71
provide a fixed reference to the address of the BASIC operator
table. This table, currently at 18472/$4828, holds the priorities
and dispatch addresses for the mathematical operators such as
+ , - , * , and / .

44914 JDRAWLN$AF72
Entry point for the DRAWLN routine, currently at 39728/
$9B30. This is the basic bitmapped graphics line-drawing
routine.

44917 $AF75 JGPLOT
Entry point for the GPLOT routine, currently at 39931/$9BFB.
This routine plots a point on the bitmapped screen using the
currently specified color source.

44920 $AF78 JCIRSUB
Entry point for the CIRSUB routine, currently at 26448/$6750.
This is the basic bitmapped graphics circle-drawing
subroutine.

44923 $AF7B JRUN
Entry point for the RUN routine, currently at 23195/$5A9B.

44926 $AF7E JRUNC
Entry point for the RUNC routine, currently at 20979/S51F3.
RUNC is actually an alternate entry point into NEW to reset
the text pointer to the start of program text and perform CLR.

44929 $AF81 JCLR
Entry point for the CLR routine, currently at 20984/$51F8.

238

$AF99 44953

44932 $AF84 JNEW
Entry point for the NEW routine, currently at 20950/S51D6.

44935 $AF87 JLNKPRG
Entry point for the LNKPRG routine, currently at 20303/
$4F4F. This program updates the line links for all lines in the
current program.

44938 $AF8A JCRUNCH
Entry point for the CRUNCH routine, currently at 17162/
$430A. This routine is the one responsible for converting lines
of text into tokenized BASIC statements.

44941 $ AF8D JFNDLN
Entry point for the FNDLN routine, currently at 20580/$5064.
This routine searches through program text for the line num-
ber specified in locations 22-23/S16-17. Upon exit, the carry
bit will be clear if no match was found, or set if the specified
line was located.

44944 SAF90 JNEWSTT
Entry point for the NEWSTT routine, currently at 19190/
$4AF6. This routine prepares for the execution of the next
BASIC statement.

44947 $AF93 JEVAL
Entry point for the EVAL routine, currently at 30935/$78D7.
This routine evaluates a single numeric term or variable into a
value in FAC1.

44950 $AF96 JFRMEVL
Entry point for the FRMEVL routine, currently at 30703/
$77EF. This routine evaluates a numeric expression, leaving
the results in FAC1.

44953 $AF99 JRUN_A_PROGRAM
Entry point for the RUN routine, currently at 23206/$5AA6.
This routine performs the portion of the RUN routine nor-
mally executed for running a program after it has been loaded
from disk. The extra steps in this case include relinking the
program before it is run,

239

44956 $AF9C

44956 $AF9C JSETEXC
Entry point for the SETEXC routine, currently at 23169/
$5A81, This routine sets BASIC flags to indicate that a pro-
gram is running.

44959 $AF9F JLINGET
Entry point for the LINGET routine, currently at 20640/
$50A0. This routine reads a string of characters and generates
a two-byte integer number in locations 22-23/$16-$17, The
value must be less than 64000 or a SYNTAX ERROR will
occur.

44962 $AFA2 JGARBA2
Entry point for the GARBA2 routine, currently at 37610/
$92EA. This routine performs a garbage collection, removing
inactive strings from the string pool to increase the amount of
available string space.

44965 $AFA5 JEXECUTE_A_LINE
Entry point for the MAIN routine, currently at 19917/S4DCD.
This routine is BASIC'S primary immediate mode loop.

44968-45055 $AFA8-$AFFF Unused
All locations in this unused area of ROM are filled with the
value 255/$FF.

240

Machine Language
Monitor ROM

The duplicate use of the word monitor in computer terminology
may be confusing at first. The term can refer to either hard-
ware, a dedicated video screen used to display information
from the computer, or software, a program used to examine
and modify the contents of memory. Once you understand the
difference, the meaning of monitor is usually obvious from the
context. This chapter describes the 128's built-in software moni-
tor, which resides in the 4K block of ROM from 45056-49151/
$B000-$BFFF. In addition to examining and changing memory,
this monitor allows you to assemble, disassemble, and execute
ML routines; examine and change microprocessor register con-
tents; and copy, compare, save, load, and verify blocks of
memory.

Like the 128's BASIC, its machine language monitor has a
long heritage from previous Commodore models. All of the
original CBM models (except for very early PETs) included a
rudimentary monitor in ROM which allowed users to examine
and modify memory and registers, execute ML programs, and
load and save data, but had no provision for assembling or
disassembling machine language.

The VIC-20 and Commodore 64 had no monitor in built-
in ROM, but sophisticated monitors for both were available on
cartridge. A number of public-domain RAM-resident monitors
were also available, most notably Superman and Micromon. Fi-
nally, the Plus/4 and 16 once again included a monitor pro-
gram in ROM, a version called Tedmon.

The 128's monitor shares many characteristics with all of
its predecessors, but it includes a number of enhancements as
well. One of the most notable is that it allows the entry of
numbers in decimal, octal, or binary in addition to hexadeci-
mal. Whenever the monitor expects a number, you can use a
decimal value if it's prefixed with a + character, or a binary
number if it's prefixed with a % character (in the rare case
when you might want to use an octal—base 8—number, pre-

243

fix it with an ampersand, &). If no prefix is used, then hexa-
decimal is assumed. (Hex can also be explicitly specified by
using a $ character as a prefix.)

Moving Between BASIC and the Monitor
In general, the monitor is aloof from the rest of the 128 ROM
routines. Unlike BASIC—which in a number of places by-
passes the Kernal jump table and calls Kemal routines di-
rectly—the monitor calls all the Kernal routines it uses
through their formal jump table entries. Neither BASIC nor
the Kernal calls any monitor routines other than through jump
table entries. The monitor does not make use of any BASIC
ROM routines or data tables and for the most part does not in-
terfere with memory locations used by BASIC. Thus, you may
pass freely back and forth between the monitor and BASIC
without fear of upsetting the BASIC program currently in
memory. This greatly enhances the monitor's function as a de-
bugging tool.

One notable—and highly unfortunate—exception to this
independence from BASIC is that the monitor uses addresses
in the range 96-104/$60-$68 as working pointers in most op-
erations. This area includes the addresses used by BASIC for
its floating-point accumulator 1 (FAC1), where the results of
mathematical operations are stored. As a result, it is impossi-
ble to use the 128's monitor to directly examine or change the
contents of FAC1. This severely limits the usefulness of the
monitor for experimenting with BASIC floating-point routines.

One other overlap between BASIC and the monitor is that
the two share the same input buffer area for accepting and
processing commands (512-673/$0200-$02Al). Thus, it is not
possible to use the monitor to examine the BASIC input buffer
contents or to manipulate data in the input buffer, since the
buffer will be at least partially overwritten by the monitor
command to display or change the memory area.

Memory Management
Another particularly attractive feature of the 128's monitor is
the ease with which it interfaces with the computer's memory
management system. Addresses in monitor commands are
specified as five-digit hexadecimal values, where the first digit
refers to the bank and the remaining four specify the address
within the bank. Monitor commands that accept a range of ad-

244

dresses can span banks—T ED000 EDFFF 1C000, for example.
Thus, the monitor can effectively see the 16 separate banks as
a single 1024K (16 * 64K) block of memory. One exception is
the F (fill memory) command, which cannot cross bank bound-
aries, because doing so would overwrite the vital contents of
locations $00 and $01.

The fact that the monitor can see the 128's memory as a
continuous block has an important consequence for the H
(hunt for byte pattern) command. Remember that the banks
are not really 16 separate blocks of memory, but rather 16 dif-
ferent arrangements of the available RAM and ROM. The low-
est IK of memory (including the input buffer at 512/$0200) is
common to all banks, and at least the lower 4K of block 0
RAM {including the buffer at 2688/$0A80, where the search
pattern is stored) appears in all even-numbered banks and in
banks 13/$D and 15/$F.

Thus, if you search any bank from beginning to end (for
example, H 10000 1FFFF 'C-128), you'll always find at least
one match for your search pattern—in the input buffer at
$0200, where the search command is stored. If you search any
even-numbered bank from beginning to end, you'll find at
least two matches for your search pattern—once in the input
buffer at $0200 and again in the search buffer at $0A80. And
if you search all banks from beginning to end (for example, H
00000 FFFFF 'COMPUTE!), then you'll always find at least 26
matches because of all the times the memory areas used by
the input buffer and search buffer appear in the different
banks. It's important to choose your address range carefully
when searching for a byte pattern.

A final note on banks and the monitor: If no bank is ex-
plicitly specified, bank 0 is assumed. This is different from
BASIC, which retains the setting specified in a previous BANK
statement, starting with a default of bank 15. So when using
the monitor, you must always explicitly specify the bank if
you wish to use any bank other than bank 0, It is particularly
important to remember this when using the G and J com-
mands, lest you send the processor off to some uncharted re-
gion of memory.

For the programmer wishing to make use of ROM
routines, those in the monitor are generally less useful than
those in the BASIC, screen editor, and Kernal portions of the
ROM. The monitor JMPs rather than JSRs to the routines used

245

45056 $B000 $B08B 45195

to perform monitor commands, so most major routines end by
jumping directly back to the monitor's main loop rather than
with an RTS opcode. You probably wouldn't want to incorpo-
rate calls to such routines in your own programs because the
routines never return from the monitor. However, the main
command execution routines use a number of subroutines that
do end with RTS opcodes, and you may find some of these
useful, particularly the routines to convert and print byte val-
ues as decimal numbers (at 47623/$BA07 and 47687/SBA47)
or as hexadecimal numbers (at 47250/$B892). An example is
provided at the end of the chapter.

Monitor Jump Table
Like the BASIC screen editor, and Kernal jump tables, each
three-byte entry in the following table consists of a JMP
opcode followed by the address of an important routine.

45056 $B000 JMONINIT
Monitor cold-start entry point; jumps to 45089/$B021, which
enters the monitor with default microprocessor register values.
This is the entry point when the RUN/STOP key is held
down during power-on/reset, or when the MONITOR com-
mand is executed in BASIC.

45059 $B003 JMONBRK
Monitor break entry point; jumps to 45065/$B009, which en-
ters the monitor with the current program counter, bank, and
microprocessor A, X, and Y register values preserved. The
monitor is normally called via this entry point whenever a
BRK opcode is executed because the Kernal RESTOR routine
[$E056], part of the RESET sequence, initializes the CBINV
vector at 790-791/$0316-$0317 to point here. CBINV deter-
mines where control is passed after a BRK.

45062 $B006 JIMONRTN
Reentry point from the IMON indirect vector. Like the BASIC
and Kernal indirect vectors, the monitor's command execution
routine has an indirect vector, IMON (814-815/$032E-$032F),
which is initialized by the Kernal RESTOR routine [$E056] to
point here. From this point, control is transferred back to
45234/$B0B2 in the main loop, the address immediately fol-

246

lowing the IMON jump. See IMON for information on how
the indirect vector can be used to wedge in additional monitor
commands.

45065 $B009 MONBRK
Monitor entry routine when BRK instruction encountered.
Prints BREAK and a {BELL} character, then retrieves and
stores the bank number, program counter, and microprocessor
register values that were placed on the stack by the IRQ/BRK
handling routine [$FF17], then branches into the following
routine to fall through to the register display and main loop.

45089 $B021 MONINIT
Cold-start routine for monitor.
Switches to bank 15, loads all register storage locations with
zeros, sets the program counter storage to $B000 and bank
storage to 15, and prints MONITOR. Next (at $B046) the stack
pointer is stored and Kernal error messages are enabled. The
routine then falls through to display the stored register values
and enter the main loop.

45136 $B050 SHOWREG
Handles R (register display) command.
Prints a heading for the register display, then displays the con-
tents of the storage locations (2-9/$02-$09) that represent the
program counter (prefixed with the current bank number); status;
and A, X, Y, and stack pointer register values. The storage lo-
cations are filled upon entry to the monitor and can be changed
with the register change (;) command. To simplify the process
of changing register values, this routine adds a semicolon before
the displayed values so that you can change the stored values
by typing over the displayed values and pressing RETURN.
The routine ends by falling through into the main loop.

45195 $B08B MONMAIN
Main command execution loop for the monitor.
Clears a line for input, then gets a command line into the in-
put buffer (512-672/$0200-$02AO). The routine accepts char-
acters until RETURN is pressed. Characters are then retrieved
from the buffer until one is found that is not a space. This
character is assumed to be a monitor command (all monitor

247

45283 SB0E3 SB12A 45354

commands consist of a single character). With this character in
the accumulator, the routine jumps through the IMON indirect
vector at 814-815/$032E-$032F. Normally, this vector points
to the jump table entry at $B006, which immediately returns
to the address following the indirect jump. However, this vec-
tor can be changed to allow additional commands to be added
to the monitor. See the discussion at IMON for more details.

The routine then compares the command character in the
accumulator against characters from the command table at
45286/$B0E6. If no match is found, an error is assumed, and
(at $B0BC) the error signal (a question mark) is printed follow-
ing the command. The routine then loops back to process an-
other command. If a match is found among the first 15 char-
acters in the command table, then the command is executed
by pushing an address from the table at 45308/$B0FC onto
the stack, then jumping to read the parameter following the
command. The RTS at the end of the parameter decoding rou-
tine [$B7A7] will cause control to be passed to the command
execution address stored on the stack. If the matching charac-
ter is among characters 16-19 in the table ($-%), then a jump
is taken to the base conversion routine [$B9B1]. If the match-
ing character is among characters 20-22 in the table (L-V),
then a jump is taken to the routine that prepares for load,
save, or verify [$B337].

45283 SB0E3 EXITMON
Handles X {exit to BASIC) command.
Leaves the monitor and returns to BASIC by jumping indi-
rectly through BASIC'S restart vector at 2560-2561/
$0A00-$0A01.

45286 $B0E6 COMTBL
Table of monitor commands.
Each of the 22 commands consists of a single character:
A C D F G H J M R T X @ . > ; $ + & % L S V

45308 $B0FC EXECTBL
Table of execution addresses for the monitor commands.
Each two-byte entry in the table consists of the address minus
1 of the routine to perform the corresponding command. The
entries are one less than the actual address because of the way
the RTS opcode behaves: When RTS pulls a return address
248

from the stack, it adds 1 to the address value before placing
the value in the 8502's program counter. The actual execution
addresses for each of the commands handled by this table are
as follows:
A
C
D
F
G
H
J
M
R
T
X
@

>

{Assemble instruction)
(Compare memory blocks)
{Disassemble instruction)
{Fill memory)
(Go to routine)
(Hunt for byte)
(Jump to subroutine)
(Memory display)
(Register display)
(Transfer memorv)
(eXit to BASIC)
(send disk command)
(same as A)
(change memory)
(change register)

45338 SB11A

SB406
SB231
$B599
SB3DB
$B1D6
$B2CE
$B1DF
$B152
$B050
$B234
$B0E3
$BA90
$B406
$B1AB
$B193

MINDFET

J

INDFET call for the monitor.
Calls the Kernal INDFET routine [$FF74] to retrieve a charac-
ter into the accumulator from the bank specified in 104/$68 at
the address pointed to in 102-103/$66-$67, and with the off-
set specified by the contents of the Y register. The use of
$66-$68 as working addresses makes it impossible to use the
monitor to examine the contents of floating-point accumulator
1 (FAC1), since the value in FAC1 will be changed by the
monitor M command (which uses this routine).

45354 $B12A MINDSTA
INDSTA call for the monitor-
Calls the Kernal INDSTA routine [$FF77] to store the value in
the accumulator into the bank specified in 104/$68 at the ad-
dress pointed to in 102-103/$66-$67, and with the offset
specified in the Y register. The use of $66-$68 as working ad-
dresses makes it impossible to use the monitor to load values
directly into floating-point accumulator 1 (FAC1), since the
value in FAC1 will be changed by the > (memory change)
command (which uses this routine).

249

45373 $B13D

45373 $B13D MINDCMP
INDCMP call for the monitor.
Calls the Kernal INDCMP routine [$FF7A] to compare the
value in the accumulator against the value at the address
pointed to in 102-103/$66-$67, with the offset specified in
the Y register, from the bank specified in 104/$68. The only
monitor routine that uses indirect comparison is the
compare/transfer routine [$B321], and that routine calls
INDCMP directly, using instead 96-97/$60-$61 as the ad-
dress pointer and 98/$62 for the bank value.

45394 $B152 SHOWMEM
Handles M (memory display) command.
Displays the contents of a specified area of memory as hexa-
decimal values and ASCII characters. The routine functions by
repeatedly calling the subroutine display lines of byte and
character values [$B1E8].

The format depends on the screen mode: 8 bytes per line
in 40-column mode or 16 bytes per line in 80-column mode.
No parameters are required, but either one or two parameters
can be specified. If no parameters are specified, the display be-
gins at whatever address is currently in 102-103/$66-$67
from the bank specified in 104/$68. Before other operations
are performed, the value in those locations is not predictable.
After another M command, these locations will hold an ad-
dress one line (8 or 16 bytes) higher than the previous ending
address. Twelve lines of data will be displayed, representing
either 96 bytes (40-column mode) or 192 bytes (80-column
mode). If one address is specified, 12 lines are displayed start-
ing at the specified address. If two addresses are specified, all
bytes between the addresses are displayed; the NO SCROLL
key may be used to pause the screen and the STOP key will
halt the process. The routine always displays full lines, so a
few bytes beyond the specified ending address may also be
shown. It is possible to wrap from bank to bank; the next ad-
dress after $FFFF in one bank is $0000 in the next higher
bank. Thus, the M command treats the 16 banks like a con-
tinuous block of memory. However, the address will not wrap
from $FFFFF to $00000. The routine ends by jumping back to
the main loop

250

8B1AB 45483

45460 SB194 CHNGREG
Handles ; (change register) command.
Allows you to change the contents of the bank, program
counter, and register storage locations (2-9/$02-$09). Since
the values in the storage locations are reloaded into the cor-
responding registers by the G and J commands, this allows
you to change values that the various microprocessor registers
will hold when ML routines are executed from the monitor.
The register contents are usually changed by editing the val-
ues displayed by the R {register display) command [$B050].
Since that routine automatically provides the semicolon (;) in
front of the values, you may not even have realized that this
is a separate command. You are free to use the ; command in-
dependently of the register display, but it is somewhat less
convenient.

The routine expects to read the values in order, so you
must supply values for all registers with storage locations
lower than the one you wish to change. This isn't a problem if
you're editing the register display, but if you're using the ;
(semicolon) command independently, you must supply values
for all registers that are normally displayed to the left of the
value you wish to change. For example, even if you want to
change only the Y register value, you must still also supply
address, status register, accumulator, and X register values (in
order) before the Y register value.

45483 6B1AB CHNGMEM
Handles > (change memory) command.
Allows you to change the contents of one or more memory lo-
cations—to a maximum of either 8 or 16 locations, depending
on whether the 40- or 80-column screen is in use. Memory
contents are usually changed by editing the lines of byte val-
ues displayed by the M (memory display) command [$B152].
Since that routine automatically provides the > in front of the
address and values, you may not even have realized that this
is a separate command. You are free to use the > command
independently of the memory display; in fact, it's more
convenient when you need to change only one or two bytes.

If no parameters are found following the > command,
then a line of byte values is displayed beginning at the ad-
dress in 102-103/$66-$67 from the bank in 104/$68. If no

251

45526 3B1D6

monitor commands involving ranges of addresses—for ex-
ample, M, T, or C—have yet been performed, the value in
these locations is unpredictable. Following the M command,
the locations will hold an address one line (8 or 16 bytes, de-
pending on the display width) higher than the address of the
last line displayed.

Only hexadecimal byte value parameters can be inter-
preted; you cannot change memory by changing the ASCII
characters displayed at the end of each line. The routine to
display a line of memory [$B1E8] is called to redisplay the
changed locations. A full line (8 or 16 bytes) is always
redisplayed, even if you have changed only one or two bytes.
The routine ends by jumping back to the main loop [$B08B].

45526 SB1D6 GOTOLOC
Handles C (go to routine) command.
Loads the bank and program counter storage locations (2-4/
$02-$04) with the specified values if a target address is sup-
plied. The stack pointer is restored to the value it had upon
entry to the monitor (stored in 9/$09). This negates the effects
of any stack operations the monitor routines may have per-
formed. Finally, the Kernal JMPFAR routine [$FF71] is called
to transfer control to the address specified in 3-4/$03-$04,
and in the bank specified in 2/$02, with the microprocessor
registers loaded from 5-8/$05-$08.

There's normally no returning from a JMPFAR. If you
want to get back to the monitor after executing an ML routine
using G, then the routine at the target address must end with
a BRK ($00) opcode. Execution of the BRK will return you to
the monitor via the break entry point [$B003],

If you use G to go to a routine that ends with an RTS,
you'll be returned to BASIC at the end of the routine. If you'd
prefer to be returned to the monitor when a program termi-
nates with RTS, use J instead of G.

45535 $B1DF JMPSUB
Handles J (jump to subroutine) command.
Loads the bank and program counter storage locations (2-4/
$02-$04) with the specified values if a target address is sup-
plied. The Kernal JSRFAR routine [$FF6E] is called to transfer
control to the address specified in 3-4/$03-$04, and in the
bank specified in 2/$02, with the microprocessor registers

252

$B231 45617

loaded from 5-8/$05-$08. Upon return from the JSRFAR, the
routine jumps back to the main loop [$B08B].

To get back to the monitor cleanly after using J, you'll
need to be sure that the routine at the target address ends
with an RTS opcode. Execution of a BRK opcode will also
cause a return to the monitor (via the break entry point
[$B003]), but in that case the JSRFAR return address will be
left on the stack.

45544 $B1E8 SHOWLIN
Displays a line of memory as hex bytes and ASCII characters.
Clears a screen line, then prints a > character to facilitate use
of the memory change command [$B1AB], Next, the bank and
address of the first location in the current display line (in
102-104/$66-$68) are printed. A loop reads bytes from mem-
ory and prints two-digit hexadecimal numbers representing
the byte values. The loop repeats for either 8 or 16 bytes, de-
pending on the screen width (determined by checking the
value in 215/$D7). After this, the routine prints a colon (so
that the following ASCII characters will not be counted as part
of the input for the memory change command) and an {RVS}
character (so that the following ASCII characters will be dis-
played in reverse video). Finally, a second loop is used to read
the same 8 or 16 bytes again, but this time to display the
equivalent ASCII character for the byte value. To prevent
cursor or color control characters from being printed and up-
setting the screen display, the character code for the period (.)
is substituted if the byte value to be displayed is less than
32/$20 or between 128-159/$80-$9F.

45617 SB231 CMPXFR
Compares or transfers blocks of memory.
Begins by loading an operation flag (147/$93) with a value
that indicates which function is being performed: 0/$00 if the
routine is entered at $B231 for C (compare) or 128/$80 if en-
tered at $B234 for T (transfer). The transfer operation might
more properly be called a copy, because the contents of the
source block of memory are not changed unless the blocks
overlap. A direction flag (2739/$0AB3) is also used during
transfers to indicate whether bytes are being copied downward
in memory (flag value 0/$00) or upward (flag value 128/$80).
The direction of a transfer is significant—downward moves

253

45774 SB2CE SB39F 4 5 9 8 3

must work from the starting address toward the ending ad-
dress, while upward moves must work from end to start. Oth-
erwise, if the source and destination ranges overlap, a single
value would be rippled through the destination range.

The routine loads bytes from the source address range
and, if a transfer operation is indicated, stores the value in the
corresponding destination address using the Kernal INDSTA
routine [$FF77]. Next, it compares the byte in the source range
against the byte in the destination range using the Kernal
INDCMP routine [$FF7A]. This performs the compare opera-
tion (the bytes should always be equal for a transfer opera-
tion). If the bytes do not match, the address of the mismatch is
printed. Then the source and destination addresses are either
incremented (for a compare or downward transfer) or decre-
mented (for an upward transfer). This loop is repeated until all
bytes in the range have been compared or transferred; then
the routine jumps back to the main loop [$B08B], However,
the loop also includes a call to the Kernal STOP routine
[$FFE1], so the RUN/STOP key can be used to halt the com-
pare or transfer.

45774 $B2CE SEARCH
Searches memory for byte pattern.
Evaluates the address parameters and calculates the number of
bytes to search, then fills the buffer at $0A80 with the search
pattern. If the first nonspace character following the ending
address parameter is the apostrophe ('), then the following
characters are copied directly from the input buffer into the
search buffer, so the search will be for the actual ASCII char-
acters. If the apostrophe is not found, the characters following
the ending address are converted into byte values before being
placed in the buffer.

Once the search buffer is prepared, a byte is loaded from
memory and compared against the first byte in the search
buffer. If the two bytes match, the next byte in memory is
compared to the next byte in the buffer, and so on, until either
a mismatch occurs or the end of the search buffer is reached
(which indicates that the pattern has been matched). In the
case of a match, the starting address of the match is printed,
followed by two spaces. The testing process normally repeats
until all bytes in the specified address range have been
checked, but the loop includes a call to the Kemal STOP rou-

254

tine [$FFE1], so the RUN/STOP key can be used to be used to
terminate the search. The routine ends by jumping back to the
main loop [$B08B],

Be sure to see the warning in the introduction to this
chapter about using the H command for searching wide ad-
dress ranges.

45879 $B337 MONLSV
Prepares for load, save, or verify.
Begins by setting default values for the device number, sec-
ondary address, bank, filename length, and filename address.
Setting these values directly (rather than using Kernal routines
like SETLFS, SETNAM, and SETBANK) is an exception to the
monitor's otherwise strict use of Kernal jump table calls. If no
characters follow the command, then a branch to 45995/$B3AB
allows the L and V commands to be used alone to load or ver-
ify using "nameless" tape files.

If anything follows the command, it is assumed to be a
filename and must start with a quotation mark character ("),
or else an error will be signaled. Characters following the
opening quotation mark are copied into the monitor buffer at
2688/$0A80 until a closing quotation mark is found. An error
is signaled if no closing quotation mark is found or if more
than 16 characters are used in the filename. If no other param-
eters are found following the closing quotation mark, a branch
to 45995/$B3AB attempts to load or verify a tape file with the
specified name.

If a parameter value follows the closing quotation mark,
the low byte of the value is copied into the device number lo-
cation (186/$BA). The next parameter value is assumed to be
a starting address, A load or verify is attempted if the param-
eter is absent. The final parameter, if any, is assumed to be the
ending address. If it's missing, a branch to 46O33/$B3D1 at-
tempts a relocating load or verify. If it is present, the com-
mand is checked, and an error is signaled if it is not S (an
ending address cannot be specified for a load or verify).

45983 $B39F MONSAVE
Handles save for monitor.
Changes the secondary address setting to zero to specify a re-
locatable file if the device is the tape drive. The Kernal SAVE

255

45995 SB3AB

routine [$FFD8] is used to write the data to the specified de-
vice. The routine ends by jumping back to the main loop
[SB08B].

45995 $B3AB MONLOAD
Handles load and verify.
Checks that the command is either V or L, and signals an er-
ror if not. For V, the character code for V (86/$56) is left in
the accumulator; for L, a zero is placed in the accumulator.
The Kernal LOAD routine [$FFD5] is then called, which will
perform a load if the accumulator holds zero (for L) or a verify
if the accumulator holds a nonzero value {for V). The routine
tests for a verify error; if one occurs, the message ERROR is
printed to signal that the data in memory does not match the
file on disk or tape. The routine ends by jumping back to the
main loop [$B08B],

46033 6B3D1
Prepares for relocating load or verify.
Loads the specified ending address value and changes the sec-
ondary address (185/$B9) from 1 to 0, indicating a relocating
load is to be attempted. The routine then branches to attempt
load or verify [$B3AB],

46043 $B3DB FILLMEM
Fills memory with specified byte value.
Evaluates the starting and ending addresses, and calculates the
number of bytes to fill. If the starting and ending banks are
not the same, an error is signaled to prevent the fill operation
from crossing bank boundaries and overwriting the important
values in locations $00 and $01. If the address range is valid,
the fill byte value is read, and a loop begins to store fill byte
in all memory locations in the specified range. The loop nor-
mally repeats until the specified number of bytes have been
filled, but it includes a call to the Kernal STOP routine
[$FFE1], so the RUN/STOP key can be used to halt the fill.
The routine ends by jumping back to the main loop [$B08B].

When filling, you must be careful not to overwrite page 0
or page 2, both in the area of memory common to all banks.
Page 0 contains the pointer to the byte to fill (102-104/$66-
$68), and page 2 contains the INDSTA routine used to store

256

$B406 46086

bytes in the specified addresses. Overwriting either of these
areas will likely result in a system lockup.

46086 $B406 ASSMBLE
Handles A (assemble) command or its equivalent (.).
Checks for values following the A or period (.) and signals an
error if none is found. The period is accepted as a synonym
for A to simplify the assembly process by allowing you to edit
the lines displayed by the D (disassemble) command. Since
the D command automatically provides the period before each
line, you may not have realized that it is treated as a separate
command, but you can substitute it freely for A.

If only an address is found following the command, the
routine simply returns to the main loop [$B08B], Next, the
routine searches for the first group of three nonspace charac-
ters. Any values on the input line with fewer than three char-
acters are ignored;this explains why the two-digit hexadecimal
byte values displayed in front of the three-character mnemonic
by the disassemble routine are ignored when the instruction is
edited. It also explains why changes to the two-digit byte val-
ues are ignored by this routine. The three-character pattern is
then packed into a two-byte value. This packing scheme is a
holdover from the RAM-resident monitors of earlier Commo-
dore computers. It's really unnecessary in the 128, which has
room to spare in this block of memory, but Commodore's pro-
grammers probably found it easier to reuse the existing code.
All 8502 ML mnemonics consist of combinations of the alpha-
betic characters A-Z. Since there are only 26 different valid
characters, any single character can be represented by a five-
bit value (which can hold 0-31), and three five-bit values can
fit nicely into two eight-bit bytes.

As an example of how this packing works, suppose the
pattern found is LDA—corresponding to hex bytes $4C $44
$41. First, the value 63/$3F is subtracted from each byte,
yielding $0D $05 $02. The binary equivalents are %00001101
%00000101 %00000010. The rightmost five bits of each value
are shifted rightward into two bytes. The resulting packed
mnemonic in these locations is %01101001 %0l000100, or
$69 $44.

Next, the routine infers an addressing mode from the pa-
rameter following the three-character pattern. The packed pat-
tern is compared against those in the table at 46881/$B721.

257

46489 8B599

(The packing scheme does make the testing for valid mne-
monics slightly faster, since only two bytes need to be com-
pared instead of three.) An error is signaled if no match is
found; otherwise, the position of the matching mnemonic in
the table is used along with the addressing mode to calculate
the proper opcode for the specified instruction. The opcode
and its associated parameter (if any) are then stored in mem-
ory, and the routine at 46556/$B5DC is called to disassemble
the line just assembled. This provides the hex values of the
ML bytes. Finally, the routine loads the input buffer with an A
and the next address value so that these will be found when
the routine ends by jumping back to the main loop [$B08B],
This greatly simplifies the assembly of further instructions.

46489 8B599 DISASSM
Handles D (disassemble) command.
Calculates the number of bytes to disassemble, then calls
46548/$B5D4 as many times as necessary to disassemble that
many bytes. If no parameter is specified, 20 bytes are dis-
assembled beginning at the address in 102-104/$66-$68. (Ac-
tually, up to 22 bytes may be disassembled, depending on
how many are necessary for the last full instruction.) If no pre-
vious commands have been executed, the address value is un-
predictable. After an earlier D command, the value will be the
next address beyond the last one previously disassembled. If
only a starting address is provided, 20 bytes are disassembled
beginning at the specified address. If both starting and ending
address parameters are provided, all instructions between
those addresses will be disassembled. However, the disassem-
bly loop includes a call to the Kernal STOP routine [$FFE1], so
the RUN/STOP key can be used to halt the disassembly. You
may also use the NO SCROLL key to pause the disassembly.
The routine ends by jumping back to the main loop [$B08B],

46548 $B5D4 DISASM1
Disassembles a single instruction.
Prints a period (to simplify editing of instructions), then the
bank and address of the opcode byte to be disassembled. A
call to 46681/SB659 calculates the addressing mode and offset
into the packed mnemonic table for this opcode. The hex
value of the opcode and up to two associated data bytes are
then printed. They're padded with spaces to align the mne-

258

$B707 46855

monies column. A call to 46753/SB6A1 unpacks and prints
the mnemonic. The associated parameter value is then printed,
along with such characters as #, (, and), to identify the ad-
dressing mode for the instruction. For relative branching in-
structions, the target address of the branch is printed instead
of the relative offset value.

46681 $B659 CALCMN
Calculates mnemonic and addressing mode.
Manipulates the specified opcode (in the accumulator upon
entry) to provide the offset into the table for the correspond-
ing packed mnemonic, an addressing mode identifier value,
and a count of associated data bytes (0-2).

46753 $B6A1 PRNTMN
Prints mnemonic for opcode.
Unpacks and prints a mnemonic from the table at 46881/$B721.
Upon entry, the accumulator holds the offset into the table for
the mnemonic to be printed. As an example of how the un-
packing works, the first table entry is $1C $D8. The binary
equivalent is %0001110011011000. Divided into three five-bit
groups (and ignoring the rightmost bit), that's %00011 %10011
%01100, or $03 $13 $0C. Adding $3F to each yields $42 $52
$4B, corresponding to the character codes for the letters BRK.
You would expect this to be the first table entry, since the BRK
instruction has the lowest possible opcode ($00).

46787 $B6C3 OPCDTBL
Opcode decoding table.
The values in this table are used by the mnemonic and mode
calculation routine [$B659] to determine the packed mnemonic
table offset for the specified opcode value.

46855 6B707 INDCTBL
Table of addressing mode indicators.
Each 8502 mnemonic may have several possible addressing
modes, each with a different opcode. The values from this ta-
ble are used to indicate the mode which should be associated
with a mnemonic to represent the current opcode.

259

